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Preface

This volume contains the papers presented at the 14th International Symposium
on String Processing and Information Retrieval (SPIRE), held in Santiago, Chile,
on October 29–31, 2007. SPIRE 2007 was organized in tandem with the 5th Latin
American Web Congress (LA-WEB), with both conferences sharing a common
day on Web Retrieval.

The papers in this volume were selected from 77 papers submitted from 25
different countries in response to the Call for Papers. Due to the high quality
of the submissions, a total of 27 papers were accepted as full papers, yield-
ing an acceptance rate of about 35%. SPIRE 2007 also featured three talks by
invited speakers: Andrew Tomkins (Yahoo! Research, USA), Nivio Ziviani (Fed-
eral University of Minas Gerais, Brazil) and Justin Zobel (NICTA, Melbourne,
Australia).

The SPIRE annual symposium provides an opportunity for researchers to
present original contributions on areas such as string processing (dictionary al-
gorithms, text searching, pattern matching, text compression, text mining, nat-
ural language processing, and automata based string processing), information
retrieval (IR modeling, indexing, ranking and filtering, interface design, visual-
ization, cross-lingual IR systems, multimedia IR, digital libraries, collaborative
retrieval, and Web related applications), interaction of biology and computation
(DNA sequencing and applications in molecular biology, evolution and phyloge-
netics, recognition of genes and regulatory elements, and sequence driven pro-
tein structure prediction), and information retrieval languages and applications
(XML, SGML, information retrieval from semi-structured data, text mining, and
generation of structured data from text).

Special thanks are due to the members of the Program Committee and the
additional reviewers who worked very hard to ensure the timely review of all
submitted manuscripts. Thanks are due to Fabiano Cupertino Botelho, a Ph.D.
student volunteer who ran the OpenConf system during the reviewing process
and helped with the editorial work for this volume. We also thank the local
organizers for their support and organization of SPIRE, in particular Javier
Velasco, Christian Middleton, and Sara Quiñones, as well as the local team of
student volunteers, whose efforts ensured the smooth organization and running
of the event.

We would like to thank the sponsoring institutions, the Millennium Nucleus
Center for Web Research of the Dept. of Computer Science of the University of
Chile, the Dept. of Computer Science of the Federal University of Minas Gerais
and Yahoo! Research Latin America.

October 2007 Nivio Ziviani
Ricardo Baeza-Yates
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Joaqúın Adiego, Miguel A. Mart́ınez-Prieto, and Pablo de la Fuente

Local Transpositions in Alignment of Polyphonic Musical Sequences . . . . 26
Julien Allali, Pascal Ferraro, Pierre Hanna, and Costas Iliopoulos

Efficient Computations of �1 and �∞ Rearrangement Distances . . . . . . . . . 39
Amihood Amir, Yonatan Aumann, Piotr Indyk, Avivit Levy, and
Ely Porat

Generalized LCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Amihood Amir, Tzvika Hartman, Oren Kapah, B. Riva Shalom, and
Dekel Tsur

Exploiting Genre in Focused Crawling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Guilherme T. de Assis, Alberto H.F. Laender,
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A Chaining Algorithm for Mapping cDNA

Sequences to Multiple Genomic Sequences

Mohamed Abouelhoda

Faculty of Engineering and Computer Science, Ulm University
D-89069 Ulm, Germany

mohamed.ibrahim@uni-ulm.de

Abstract. Given a set of matches between a cDNA sequence and multi-
ple genomic sequences, we present a subquadratic chaining algorithm for
computing an optimal chain of colinear matches, while allowing overlaps
between the matches. Our algorithm improves upon the quadratic graph
based solution, and extends the previous algorithms which are limited to
matches between a cDNA sequence and a single genomic sequence. The
matches of the resulting chain serve as anchors for computing a multiple
alignment between the cDNA and the given sequences.

1 Introduction

A fundamental task of every genome annotation project is to locate each gene
in the genome and to determine its structure. This knowledge serves as a basis
for elucidating the gene function and studying the genome organization and
evolution. One of the most successful methods for accomplishing this task is
the mapping of cDNA sequences to the genomes they are transcribed from. A
cDNA sequence is a complementary sequence to a mRNA. Because the introns
are spliced out from a mRNA and just the exons remain, an alignment of a cDNA
to the related genomic sequence locates the corresponding gene and directly
reveals its exon-intron structure; see Figure 1 (a). The increasing number of full
cDNA sequencing projects reflects the growing popularity of this method.

For high throughput mapping of cDNA sequences, standard dynamic pro-
gramming algorithms are impractical due to their quadratic running time. Hence,
heuristic algorithms have been developed; see e.g. [7,8,12] and the references
therein. Most of these tools use an anchor-based strategy composed of three
phases: (1) computation of fragments (regions in the sequences that are simi-
lar), (2) computation of an optimal chain of colinear fragments; these are the
anchors that form the basis of the alignment, (3) alignment of the regions be-
tween the anchors considering the splice site signals.

The algorithm of Shibuya and Kurochkin [12] is superior to other ones be-
cause of two novel improvements: First, the fragments are of the type (rare)
maximal exact match computed by means of the suffix tree of the genomic se-
quence in linear time and space. Second, in contrast to other algorithms, their
chaining algorithm is geometry based and allows overlaps between the fragments.

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 1–13, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 M. Abouelhoda

Fig. 1. (a): A cDNA mapped to a genomic sequence. The exons are separated by long
introns in the genome. (b): Fragments (represented by parallelograms) overlap in the
cDNA sequence only. (c) The overlap is in both the cDNA and the genome.

(The overlap lengths are taken into account, i.e., penalized, in the objective func-
tion.) Their chaining algorithm takes O(m log m) time and requires O(m) space,
where m is the number of the fragments. (Algorithms permitting no overlaps
have been presented in [1,6,10,13].) Although this chaining algorithm is rela-
tively complicated due to the combination of range maximum queries and the
candidate list paradigm, it is an important improvement over the naive graph
based solution that takes O(m2) time [12].

The rationale behind permitting overlaps is twofold: First, overlapping frag-
ments were found to be very common in cDNA mapping [7,12], and they usually
occur at the exon boundaries in the cDNA; see Figure 1 (b). Second, the amount
of sequence covered by the chain will increase, which is crucial for both improv-
ing the sensitivity/specificity and for speeding-up the mapping task. Regarding
the sensitivity/specificity, some fragments may be discarded as a result of per-
mitting no overlap in the chain. This can reduce the chain coverage under the
threshold defined by the user to filter out noisy chains, and consequently results
in discarding the whole chain despite its potential significance. If one attempts to
overcome this drawback by decreasing the threshold, many insignificant chains
will not be filtered out and the specificity will decrease. Regarding the running
time, the less the chain coverage, the higher the running time of the third phase
in which an alignment on the character level is computed to finish the mapping
task.

The genomes of very closely related species or the genomes of different strains
of the same species share a very large sequence identity, and so does a cDNA
sequence to the genome it stems from. Therefore, it is natural to extend the algo-
rithm of Shibuya and Kurochkin to map a cDNA sequence to multiple genomes.
Such an extension, in addition to the theoretical interest related to it, will help
in both identifying the common genes among the genomes and determining the
syntenic regions (regions of conserved gene-order) among the genomic sequences.

This extension, however, is not straightforward. While computing fragments
from multiple genomic sequences can be easily achieved in linear time and space
[2,5,11,9], the extension of the chaining algorithm of Shibuya and Kurochkin
to chain fragments from k sequences while permitting overlaps is extremely



A Chaining Algorithm for Mapping cDNA Sequences 3

complicated, if not infeasible. This is due to the difficulty of analyzing the over-
laps, according to the objective function they suggested, and due to the difficulty
of combining the range queries and candidate lists; Shibuya and Kurochkin no-
ticed also these complications [12].

In this paper we handle the combinatorial chaining problem with overlap for
mapping a cDNA sequence to multiple genomic sequences. We show in this paper
that an efficient subquadratic chaining algorithm exists, if an objective function
specific to the cDNA mapping task is used. We present this algorithm, and,
moreover, address two special cases of practical interest: (1) the usage of rare
multi-MEMs, and (2) constraining the amount of overlap. For these two cases, we
show that the algorithm complexity can be further improved. Our algorithms are
easy to implement, because they use solely range queries without any candidate
lists. They are also so efficient that millions of fragments are processed in a few
minutes.

In the following section, the definitions are stated. Section 3 introduces the
chaining problem and the graph based solution. In Section 4, we present our
geometry based algorithm. In Section 5, we focus on two special cases of the
basic algorithm. Sections 6 and 7 contain experimental results and conclusions.

2 The Fragments

2.1 Definitions

For 1 ≤ i ≤ k, Si denotes a string of length |Si|. In our application, Si represents
a cDNA or a genomic sequence. Si[h1..h2] is the substring of Si starting at
position h1 and ending at position h2, and Si[h1] denotes the hth

1 character of
Si, 1 ≤ h1 ≤ h2 ≤ |Si|. A fragment is a region of similarity among the given
sequences. In this paper, we use fragments of the type (rare) maximal multiple
exact match, denoted by (rare) multi-MEM and defined as follows.

A multiple exact match among k sequences S1, . . . , Sk is a (k + 1)-tuple
(l, p1, .., pk) such that S1[p1..p1+l−1] = . . . = Sk[pk..pk+l−1]; i.e., the l-character-
long substrings of S1, . . . , Sk starting at positions p1, . . . , pk, respectively, are
identical. A multiple exact match is left maximal if Si[pi −1] �= Sj [pj −1] for any
1 ≤ i �= j ≤ k, and right maximal if Si[pi + l] �= Sj [pj + l] for any 1 ≤ i �= j ≤ k,
i.e., it cannot be extended to the left and to the right simultaneously in all the
sequences. A multi-MEM is a left and right maximal multiple exact match.

A multi-MEM (l, p1, .., pk) is called rare, if the substring Si[pi..pi+l−1] occurs
at most r times in each Si, 1 ≤ i ≤ k. A maximal multiple unique match (multi-
MUM ) is a rare multi-MEM such that r = 1, i.e., Si[pi..pi+l− 1] occurs exactly
once in each Si.

A hyper-rectangle in a k dimensional space (Rk) can be represented by the
k-tuple ([p1..q1], . . . , [pk..qk]), where [pi..qi] is the interval on the coordinate axis
xi, 1 ≤ i ≤ k. Equivalently, this hyper-rectangle can be denoted by R(p, q),
where p = (p1, .., pk) and q = (q1, .., qk) are its two extreme corner points.
A fragment of the type (rare) multi-MEM (l, p1, .., pk) can be represented by
a hyper-rectangle in R

k with the two extreme corner points (p1, .., pk) and
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(p1 + l − 1, .., pk + l − 1). In the following, we will denote these corner points
by beg(f) = (beg(f).x1, .., beg(f).xk) and end(f) = (end(f).x1, .., end(f).xk),
respectively. Furthermore, we define f.length = l to denote the length of the
multi-MEM corresponding to f .

Throughout this paper, the kth sequence is the cDNA sequence. For ease of
presentation, we consider the point 0 = (0, . . . , 0) (the origin) and the terminus
t = (|S1| − 1, . . . , |Sk| − 1) as fragments with length zero.

2.2 Computing the Fragments

Computing (rare) multi-MEMs between k − 1 genomic sequences and a cDNA
database can be achieved in a linear time and space. One strategy is to proceed
as follows: Construct the sequence Sk by appending unique characters to each
cDNA and concatenating all of them. Construct the sequence Ŝ by appending
unique characters to each genomic sequence and Sk and concatenating all of
them. Then build the suffix tree (or the enhanced suffix array [2]) for Ŝ. A multi-
MEM (l, p1, .., pk) is a match in Ŝ such that, p1 ∈ [1..(|S1| + 1]), p2 ∈ [(|S1| +
2)..(|S1|+ |S2|+2)], . . . and pk ∈ [(|S1|+ . . .+ |Sk−1|+k)..(|S1|+ . . .+ |Sk|+k)].
Computing multi-MEMs can be achieved by a bottom-up traversal of the suffix
tree of Sk, as described in [2]. There it is also shown that the rareness constraint
can be satisfied during the traversal without extra cost (the rareness value w.r.t.
Si in [2] is the value CP (Si)). For multi-MUMs, the algorithm in [5] requires a
single scan of the enhanced suffix array, and it is easy to implement.

A more efficient strategy for computing (rare) multi-MEMs has recently been
developed [11]. The idea is to construct the suffix tree (or the enhanced suffix
array) for the shortest genomic sequence, say S1. Then the remaining genomic
sequences S2, . . . Sk−1 are sequentially matched against the suffix tree using the
Chang-Lawler Algorithm [4]. During this matching, nodes of the suffix tree are
annotated with match information. Only the nodes satisfying the rareness con-
straint are taken into account. Then the cDNA database is queried against the
annotated suffix tree to further annotate more nodes. Finally, all (rare) multi-
MEMs are reported through a bottom-up traversal of the suffix tree. The pro-
gram ramaco is an implementation of the algorithm in [11]. The program M-
GCAT [9], although no details are given, seems to use a similar approach for
computing multi-MUMs.

3 Chaining Fragments with Overlaps

Definition 1. Let f ′ and f be two fragments with beg(f ′).xi < beg(f).xi, for
all 1 ≤ i ≤ k. We say that f ′ overlaps with f in Si iff (1) end(f ′).xi < end(f).xi

for all 1 ≤ i ≤ k, and (2) end(f ′).xi ≥ beg(f).xi, for any 1 ≤ i ≤, k.

For k = 2, Figure 1 (b) shows two fragments overlapping in S2 but not in S1,
while Figure 1 (c) shows two fragments overlapping in both S1 and S2.

Definition 2. The relation � on the set of fragments is defined as follows. f ′ �
f iff the following two conditions hold: beg(f ′).xi < beg(f).xi and end(f ′).xi <
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end(f).xi, for all 1 ≤ i ≤ k. If f ′ � f , then we say that f ′ precedes f . The
fragments f ′ and f are colinear if either f ′ precedes f or f precedes f ′.

Thus, two fragments are colinear if they appear in the same order in all se-
quences. Note that if we further have end(f ′).xi < beg(f).xi, for all 1 ≤ i ≤ k,
then f ′ and f are colinear and non-overlapping. A geometric representation of
this relation for k = 2 is given in Figure 2 (a), where any fragment f ′ � f must
start in Region A(f) and end in region {AB(f)∪C(f)}; A(f) is the rectangular
region R(0, beg(f)), AB(f) is the rectangle ([0..end(f).x1−1], [0..beg(f).x2−1]),
and C(f) is the region ([0..end(f).x1−1], [beg(f).x2..end(f).x2−1]). For k > 2,
AB(f) and C(f) are the hyper-rectangles ([0..end(f).x1−1], .., [0..end(f).xk−1−
1], [0..beg(f).xk − 1]), and ([0..end(f).x1 − 1], .., [0..end(f).xk−1 − 1], [beg(f).xk

..end(f).xk−1]), respectively.

Definition 3. For any two fragments f and f ′ from k sequences, where the kth

sequence is the cDNA sequence, the amount of overlap in the cDNA sequence is

overlapk(f ′, f)=

�
end(f ′).xk−beg(f).xk+1, if beg(f).xk ≤end(f ′).xk ≤end(f).xk

0, otherwise

Accordingly, the cDNA chaining problem can be formulated as follows.

Definition 4. Given a set of m fragments, find a chain C of colinear fragments
f1, f2, .., ft (i.e., f1 � f2 � .. � ft) such that score(C) =

∑t
i=1 fi.length −

∑t−1
i=1 overlapk(fi, fi+1) is maximal.

This objective function penalizes the overlaps and maximizes the amount of
cDNA sequence mapped to the genomic sequence; which is the target of the
cDNA mapping problem. It is easy to see that a perfect mapping has a score
that equals the cDNA length. As we will show later in our geometry based
solution, this objective function has the advantage that for each fragment f
only two regions (AB(f) and C(f)) are considered, independently of k, when
constructing an optimal chain.

A straightforward solution to the cDNA chaining problem is to construct a
weighted directed acyclic graph G(V, E), where the set of vertices V is the set of
fragments (including 0 and t), and the set of edges E is characterized as follows.
For any two nodes v′ = f ′ and v = f , there is an edge e(v′ → v) ∈ E with
weight of f.length− overlap(f ′, f), only if f ′ � f ; see Figure 2 (b). An optimal
chain corresponds to a path with maximum score from vertex 0 to vertex t in
the graph. Because the graph is acyclic, such a path can be computed as follows.
Let f.score denote the maximum score of all chains ending with the fragment
f . Clearly, f.score can be computed by the recurrence

f.score = f.length + max{f ′.score − overlapk(f ′, f)|f ′ � f} (1)

A dynamic programming algorithm based on this recurrence takes O(m2) time,
where m is the number of fragments. However, this quadratic running time is a
drawback for a large number of fragments. In the following section, we present
a geometry based solution that runs in subquadratic time.
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Fig. 2. (a) The fragments are represented by diagonal lines. Region AB(f) = A(f)∪
B(f). The fragments f1 and f3 are colinear with fragment f , while f2 is not. (b) A
graph constructed over the set of fragments (drawn as 2D rectangles). An optimal chain
is an optimal path (drawn as solid-arrows including {f1, f3, f}) in the graph.

4 Geometry-Based Solution

Because our algorithm is based on orthogonal range search for maximum, we
have to recall two notions. Given a set of points in R

k with associated score, a
range maximum query (RMQ) asks for a point of maximum score in R(p, q). In
the following, RMQ will also denote a procedure that takes two points p and q
as input and returns a point of maximum score in the hyper-rectangle R(p, q).
Because all the points (representing the fragments) are given in advance, we use
two semi-dynamic data structures D1 and D2 supporting RMQ with activation to
manipulate the points. We write RMQD1 and RMQD2 to denote RMQs over D1 and
D2, respectively. The points are initially inactive in these data structures.

We further use the line-sweep paradigm to construct an optimal chain. We
sort the start points of the fragments w.r.t. their x1 coordinate and process them
in this order, which simulates a line (plane or hyper-plane in R

k) that sweeps the
points w.r.t. their x1 coordinate. If a start point has already been scanned by
the sweeping line, it is said to be active (and so does the respective fragment);
otherwise it is said to be inactive. Each active fragment has score f.score in D1

and has score f.score − end(f).xk in D2. While scanning the start point of a
fragment f , we search for the fragment f ′ that maximizes Recurrence 1 among
the active fragments by means of RMQs, considering both the overlap function
overlap(f ′, f) and the colinearity relation f ′�f .

To take the overlap into account, we launch two range queries into two disjoint
regions related to the fragment f : The first is RMQD1 into the region AB(f), and
the second is RMQD2 into the region C(f). (Recall the definition of these regions
from Section 3 and Figure 2 (a).) Fragments ending in AB(f) do not overlap
with f in the cDNA sequence, and those ending in C(f) overlap with f in the
cDNA sequence. As we will prove below, the scoring of each fragment in D1 and
D2 takes the overlap into account. From the fragments retrieved by RMQD1 and
RMQD2 , we choose the one that maximizes Recurrence 1.
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To handle the constraint f ′ � f , each fragment f is represented by the
2k-dimensional point (beg(f).x1, .., beg(f).xk, end(f).x1, .., end(f).xk) in D1 and
D2, and the range queries are formulated correspondingly. The first k compo-
nents of this point will guarantee for any fragment f̂ retrieved by the RMQs
that beg(f̂) ∈ A(f) and the last k components will guarantee that end(f̂) ∈
{AB(f)∪C(f)}. That is, the search space becomes 2k dimensional to satisfy the
colinearity constraint. The following Algorithm and proof formalize these ideas.

Algorithm 1
Sort all start points of the m fragments in ascending order w.r.t. their x1 coordinate
and store them in the array points.
For each fragment f , create the point (beg(f).x1, .., beg(f).xk, end(f).x1, .., end
(f).xk) and store it as inactive in the data structures D1 and D2.
for 1 ≤ i ≤ m

determine the fragment f with beg(f).x1 = points[i]
(b.x1, .., b.xk) := (beg(f).x1, .., beg(f).xk)
(e.x1, .., e.xk) := (end(f).x1, .., end(f).xk)
q1 := RMQD1([0..b.x1−1], .., [0..b.xk−1], [0..e.x1− 1], .., [0..e.xk−1−1], [0..b.xk−1])
q2 := RMQD2([0..b.x1−1],..,[0..b.xk−1],[0..e.x1−1],..,[0..e.x k−1−1], [b.xk..e.xk−1])
determine the fragments f1 and f2 corresponding to q1 and q2, respectively
score1 = f1.score
score2 = f2.score − (end(f2).xk − beg(f).xk + 1)
f.score = f.length + max{score1, score2}
if score1 ≥ score2 then connect f1 to f
else connect f2 to f
activate (b.x1, .., b.xk, e.x1, .., e.xk) in D1 with score f.score
activate (b.x1, .., b.xk, e.x1, .., e.xk) in D2 with score (f.score − end(f).xk)

It is clear that the RMQD1 in AB(f) retrieves a highest scoring fragment in
this regions. It remains to show that the RMQD2 in C(f) retrieves a highest
scoring fragment considering the overlap function. To this end, we introduce the
following definition and lemma.

Definition 5. The priority of a fragment f̂ , denoted by f̂ .priority, is defined as
f̂ .priority = f̂ .score − end(f̂).xk, where the kth axis corresponds to the cDNA.

Lemma 1. Let f , f ′ and f ′′ be three fragments with end(f ′) ∈ C(f) and
end(f ′′) ∈ C(f). We have f ′′.priority < f ′.priority if and only if f ′′.score −
overlapk(f ′′, f) < f ′.score − overlapk(f ′, f).

Proof.

f ′′.priority < f ′.priority
⇔ f ′′.score − end(f ′′).xk < f ′.score − end(f ′).xk

by adding beg(f).xk to both sides, we obtain

f ′′.score − overlapk(f ′′, f) < f ′.score − overlapk(f ′, f) 
�
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Thus, if f ′ is a fragment with highest priority in C(f), then f ′.score − overlapk

(f ′, f) is maximal in C(f). The priority of a fragment f ′ is independent of f .
Hence, it can be computed in constant time when f ′ is scanned. This has the
advantage that the overlaps between all fragments need not be computed in
advance (note that this would yield a quadratic time algorithm).

The complexity of Algorithm 1 depends on the complexity of the RMQs with
activation supported by the data structures D1 and D2. If D1 and D2 are imple-
mented as range trees enhanced with priority queues as shown in [1], then the
complexity of the algorithm is O(mlog2k−1 mloglog m) time and O(m log2k−1 m)
space. (The range tree is built in O(m log2k−1 m) time and takes O(m log2k−1 m)
space.) If the kd -tree [3] is used instead of the range tree, then the algorithm takes
O(m2− 1

2k ) time and requires O(m) space. (The kd -tree is built in O(m log m)
time and requires O(m) space.)

Fortunately, it is possible to reduce the dimensionality of the RMQ by two, and
accordingly improve the complexity of this algorithm. In fact, we can ignore the
first range [0..b(f).x1] and the kth range [0..b(f).xk] of the RMQs. That is, it is
sufficient to use the (2k−2)-dimensional queries RMQD1([0..b.x2−1], .., [0..b.xk−1−
1], [0..e.x1−1], .., [0..e.xk−1−1], [0..b.xk−1]) and RMQD2([0..b.x2−1], .., [0..b.xk−1−
1], [0..e.x1 − 1], .., [0..e.xk−1 − 1], [b.xk..e.xk − 1]) instead of the 2k dimensional
ones, where b and e are beg(f) and end(f), respectively. (Accordingly, each
fragment f is represented in both D1 and D2 by the (2k − 2)- dimensional point
(beg(f).x2, . . . , beg(f).xk−1, end(f).x1, . . . , end(f).xk).) The former range can
be ignored because in the line sweep paradigm any activated fragment f ′ in D1

and D2 already satisfy beg(f ′).x1 < beg(f).x1. The latter one can be ignored
because of the following: For RMQD1 in AB(f), the final ((2k)th) range [0..b(f).xk],
which restricts that the retrieved fragment f1 satisfies end(f1).xk ∈ [0..b(f).xk],
makes the inclusion of the kth range redundant. This is because beg(f1).xk <
end(f1).xk < beg(f).xk. For RMQD2 in C(f), the kth range, which restricts that
the retrieved fragment f2 satisfies beg(f2).xk ∈ [0..b(f).xk], is dispensable if we
examine the retrieved fragment f2 as follows: If beg(f2).xk < beg(f).xk, i.e.,
beg(f2) ∈ A(f), we take the retrieved fragment f2 into further consideration,
i.e., we compare its score to that of f1 and proceed further in the algorithm.
Otherwise, we ignore f2. This ignorance will not affect the optimality of the
chain because no fragment in region C(f) in this case scores better than does
the highest-scoring fragment in region AB(f). The interested reader can find a
proof of this point in Appendix I.

After this dimension reduction, the complexity of the algorithm becomes
O(m log2k−3 m log log m) time and O(m log2k−3 m) space for the range tree, and
O(m2− 1

2k−2 ) time and O(m) space for the kd -tree.

5 Special Cases

In the previous algorithm, the RMQs are (2k − 2)-dimensional to guarantee that
the retrieved fragment f ′ satisfies beg(f ′) ∈ A(f) and end(f ′) ∈ {AB(f)∪C(f)}.
However, (k − 1)-dimensional RMQs suffice if beg(f ′) ∈ A(f) implies end(f ′) ∈
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{AB(f) ∪ C(f)} and vice versa. There are two special cases of practical im-
portance that meet this requirement. The first is the usage of multi-MUMs or
rare multi-MEMs instead of multi-MEMs, and the second is the restriction to
a certain amount of overlapping. The usage of rare multi-MEMs directly filters
out repetitions, which saves using a repeat-masking program. The constraint on
the amount of overlap is practically relevant, because overlaps are usually short.

5.1 Using multi-MUMs or Rare multi-MEMs

Suppose one uses multi-MUMs instead of multi-MEMs. When the sweep-line
reaches the start point beg(f) of fragment f , then it is sufficient to use the (k−1)-
dimensional range queries RMQD1([0..e.x2 −1],.., [0..e.xk−1 −1], [0..b.xk −1]) and
RMQD2([0..e.x2 − 1], [0..e.xk−1 − 1], .., [b.xk ..e.xk − 1]) instead of the (2k − 2)-
dimensional RMQs of Algorithm 1, where b and e are beg(f) and end(f), respec-
tively. This means that it is enough that D1 and D2 store the k − 1 dimensional
point (end(f̂).x2, .., end(f̂).xk) for each fragment f̂ . The correctness of this mod-
ification follows from the fact that no multi-MUM is enclosing or embedded in
another multi-MUM in any sequence (dimension). For example, in Figure 3 frag-
ment f3 is enclosing f in S1 and f1 is embedded in f in S2. These fragments
cannot be multi-MUMs. (If such a multi-MUM existed, then the substring of the
embedded multi-MUM would occur more than once in any Si, which contradicts
the definition of multi-MUMs). That is, it is guaranteed that the fragments f ′

retrieved by the RMQ satisfy f ′ � f . (Note that the component [0..e.x1 − 1] is
ignored in the RMQs as a consequence of the line-sweep paradigm, because any
fragment f̂ , where end(f̂).x1 > end(f).x1 implying beg(f̂).x1 > beg(f).x1, is not
yet activated.) This dimension reduction improves the time and space complexity
of the algorithm sketched above to O(m logk−2 m log log m) and O(m logk−2 m),
respectively, using the range tree, and to O(m2− 1

k−1 ) time and O(m) space, us-
ing the kd -tree. (For 1D RMQs the range tree and kd -tree are equivalent and the
algorithm takes O(m log m) time and O(m) space.) For rare multi-MEMs with
r > 1 (i.e., the string composing the match appears at most r times in any Si),
we have for each fragment at most O(r − 1) fragments enclosing/embedded in
f . Therefore, an O(r) RMQs will retrieve the correct fragment to be connected.
That is, the algorithm can be easily modified to deal with rare multi-MEMs.

5.2 Restricting the Amount of Overlapping

Suppose that the minimum fragment length is �. If we tolerate overlapping
of at most � − 1 characters between any two successive fragments f ′ and f
in a chain (i.e., end(f ′).xi < beg(f).xi + �, 1 ≤ i ≤ k), then it follows that
beg(f ′) ∈ AB(f) (i.e., for all 1 ≤ i ≤ k, beg(f ′).xi < beg(f).xi). This property
can be used to reduce the dimension of the RMQs to k − 1. To this end, D1 and
D2 store the k−1 dimensional point (end(f̂).x2, .., end(f̂).xk) for each fragment
f̂ . Then we attach to each fragment f the virtual point v(f) = (beg(f).x1 +
�, .., beg(f).xk + �). When the sweep-line reaches the point v(f), we launch
RMQD1([0, v(f).x2 − 1], .., [0, v(f).xk−1 − 1], [0, beg(f).xk]) and RMQD2([0..v(f).
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Fig. 3. Fragment f1 is embedded in f in S2, while f is embedded in f2 in S2 and in f3

in S1. Such embedding cannot occur if multi-MUMs are used instead of multi-MEMs.

x2 − 1], .., [0..v(f).xk−1 − 1], [beg(f).xk..v(f).xk − 1]) to find the highest scor-
ing fragments. Note that the processing starts when we scan v(f), not beg(f).
In this case, each fragment is activated when its end point is scanned. This al-
gorithm has the same time and space complexity as the one using multi-MUMs.

6 Experimental Results

We compared the graph based solution and our algorithms to one another.
As an example dataset, we used the D.melanogaster full length cDNA data-
base (na cDNA.dros from BDGP, 11040 cDNAs of total length ≈ 23 Mbp). We
mapped this database simultaneously to the D.melanogaster and D.simulans
2R chromosomes (Release 4 from UCSC Genome Browser). The length of the
former chromosome is ≈ 21 Mbp, and the length of the latter is ≈ 20 Mbp.
We used the program ramaco [11] to generate fragments of the type rare multi-
MEMs of minimum length 15, and with different rareness values. We then ran
three programs: (1) graph, which is an implementation of the recurrence in Sec-
tion 3, i.e., graph-based (2) geom1, which is an implementation of Algorithm 1 of
Section 4, and (3) geom2, which is an implementation of the algorithm in Subsec-
tion 5.2 that constrains the amount of overlap. The table in Figure 4 (left) shows
for each rareness value the number of fragments and the time taken to process
them using the above mentioned three algorithms. (The experiments were done
using SUN-sparc machine, 1015 Mhz CPU, 6 GB RAM.) From the table it can
be noted that the graph based solution is faster for small rareness values. This
is due to the time taken to construct the kd -tree, which outweighs the speed-up
achieved by the range queries. It is also noted that geom2 is always faster than
geom1, which can be attributed to the dimensional reduction achieved in geom2.

To demonstrate that the determination of the syntenic regions is a byproduct
of our chaining algorithm, Figure 4 (right) shows a projection of the chains w.r.t.
the D.melanogaster -D.simulans 2R chromosomes. Each chain in this plot covers
more than 30% of its cDNA length. From this plot, which represents a syntenic
map of the two chromosomes, it is clear that the gene order is highly conserved.
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r frag. no. graph geom1 geom2

5 1656021 65 95 89

10 3876919 254 255 232

15 6883051 834 521 462

17 8580793 1254 671 592

18 9072474 1463 718 626

Fig. 4. Left: The experimental results for different rareness values, which are given in
the first column titled with r. The second column contains the respective number of
fragments. The other columns contain the running times in seconds for the programs
graph, geom, and geom2. Right: Projection of the chains (shown as points) w.r.t. the
D.melanogaster 2R chromosome (x-axis) and the D.simulans 2R chromosome (y-axis).

7 Conclusions

We have presented a subquadratic chaining algorithm that permits overlaps be-
tween the fragments of the type multi-MEM . The complexity of the algorithm is
O(m log2k−3 m log log m) time and O(m log2k−3 m) space for the range tree, and
O(m2− 1

2k−2 ) time and O(m) space for the kd -tree. Furthermore, we addressed
the use of rare multi-MEMs and the constraint on the amount of overlap. We
have shown that the complexity of the algorithm significantly improves for these
two cases: it takes O(m logk−2 m log log m) time and O(m logk−2 m) space for
range trees, and O(m2− 1

k−1 ) time and O(m) space for kd -trees.
We noted that the kd -tree is superior to the range tree in practice due to its

reduced space consumption and its construction time. Although the range tree
has theoretically better query time, querying the kd -tree is still faster, especially
when the programming tricks of [3] are used.

The sensitivity of the approach in this paper can be further increased by using
as short fragments as possible, increasing the rareness value, and by translat-
ing the sequences to the six reading frames (possibly combined by an alphabet
transformation). This translation considers the phenomena that one amino acid
maps to many genetic codes differing at the third (wobble) nucleotide.
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Appendix I

In Section 4, we mentioned that it is sufficient to use 2k − 2-dimensional RMQs.
Here, we prove that the kth range [0..b(f).xk] of RMQD2 in C(f) in Algorithm
1 can be ignored provided that we check if beg(f2).xk < beg(f).xk, where f2 is
the fragment retrieved by RMQD2 . That is, if this condition holds, we take the
fragment into consideration, otherwise we ignore it. To this end, we show that
this ignorance will not affect the optimality of the chain because in this case no
fragment in region C(f) scores better than does the highest-scoring fragment in
region AB(f).

Lemma 2. Let C be a chain composed of the fragments f1, .., ft. For every index
i, 1 ≤ i ≤ t − 1, we have fi+1.priority ≤ fi.priority.

Proof.

fi+1.priority = fi+1.score − end(fi+1).xk

= fi.score + fi+1.length − overlapk(fi, fi+1) − end(fi+1).xk

= fi.score − beg(fi+1).xk − overlapk(fi, fi+1) + 1
≤ fi.score − end(fi).xk

≤ fi.priority

Note that if overlapk(fi, fi+1) = 0, then fi+1.priority < fi.priority.
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Now suppose that beg(f2).xk ≥ beg(f).xk, i.e., the start point of f2 lies in C(f).
This implies that overlapk(f2, f) ≥ f2.length. According to Lemma 2, if there is
a fragment f ′ connected to f2 (i.e., f ′ is the predecessor of f2 in a highest-scoring
chain ending with f2), then the end point end(f ′) of f ′ must lie in A(f). Hence,
overlapk(f ′, f2) = 0 and we have

f ′.score = f ′.score − overlapk(f ′, f2)
= f2.length + f ′.score − overlapk(f ′, f2) − f2.length
= f2.score − f2.length
≥ f2.score − overlapk(f2, f)

Recall from Lemma 1 that f2.score−overlapk(f2, f) is maximal in C(f). Now it
follows from f ′.score ≥ f2.score−overlapk(f2, f) in conjunction with f ′.score ≤
f1.score that f2 can be safely ignored. (If f2 has no predecessor, then f2 can be
also safely ignored by Lemma 1 because f2.score−overlapk(f2, f) = f2.length−
overlapk(f2, f) ≤ 0.)
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1 Introduction

Information Retrieval Systems and Digital Libraries contain text documents
and multimedia information. Although these environments can have a lot of
multimedia data, the amount of textual data, predominant a few years ago, is
not negligible. Besides, these systems are used in several environments such as
networks or optical and magnetical media. On the other hand, in e-commerce
and e-government environments almost all handled information is textual. Since
processor speeds in the last few decades have increased much faster than disk
transfer speeds, trading disk transfer times for processor decompression times
has become a much better choice [17]. On the other hand, the use of compres-
sion techniques reduces transmission times and increases the efficiency using
communication channels. These compression properties allow costs to be kept
down.

In general, when a natural language text is modeled for compression either a
dictionary or a sliding window technique is used. In both cases, the underlying
model is a graph: each vertex represents a symbol and the edges connecting
vertices are the transitions between symbols. A graph is indirectly reconstructed
by a model while the symbols statistics are being obtained or the prediction
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tables constructed. Within the range of this model, information could be stored
as much in the vertices as in the edges. Traditionally the information stored in
vertices is used for codification, i.e. symbol frequency, and edges are used to
predict the following symbols.

In this paper we explore the use of the information provided by the edges when
a graph is used to model the text in order to improve the compression. The paper
is organized as follows. In Section 2 a brief reminder of natural language text
modelling is given. Section 3 covers related work on compression when k-order
models are used. Section 4 explains the edge-guided text compression algorithm.
Section 5 shows empirical results selecting some characteristics and comparing
the compression of our proposal with other compression systems. We conclude
in Section 6 with future work directions.

2 Modelling Natural Language Texts

Natural language is not only made up of words, considering a word as a maximal
sequence of alphanumeric characters. There are also punctuation, separator, and
other special characters. The sequence of characters between every pair of consec-
utive words is called a separator. Separators must also be considered as symbols of
the source alphabet. There are even fewer different separators than differentwords,
and their distribution is even more skewed. We will use the generic name words to
refer to both text words and separators in this paper. With regard to compressing
natural language texts the most successful techniques are based on models where
the text words are taken as the source symbols [12], as opposed to the traditional
models where the characters are the source symbols. Words reflect much better
than characters the true entropy of the text [4]. For example, a semiadaptive Huff-
man coder, with the model that considers characters as symbols, typically obtains
a compressed file whose size is around 60% of the original size, in natural language.
A Huffman coder, when words are the symbols, obtains 25% [17].

Since the text is not only composed of words but also separators, a model
must also be chosen for them. An obvious possibility is to consider the different
inter-word separators as symbols too, and make a unique alphabet for words
and separators. However, this idea does not take into account a fundamental
alternation property: words and separators always follow one another. In [12,5]
two different alphabets are used: one for words and one for separators. Once it
is known that the text starts with a word or a separator, there is no confusion
on which alphabet to use. This model is called separate alphabets.

In [14] a new idea for using the two alphabets is proposed, called spaceless
words. An important fact that is not used in the method of separate alphabets
is that a word is followed by a single space in most cases. In general, it is possible
to emphasize that at least 70% of separators in text are single space [12]. Then,
the spaceless words model takes a single space as a default. That is, if a word is
followed by a single space, we just encode the word. If not, we encode the word
and then the separator. At decoding time, we decode a word and assume that
a space follows, except if the next symbol corresponds to a separator. Of course
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the alternation property does not hold anymore, so we have a single alphabet
for words and separators (single space excluded). This variation achieves slightly
better compression ratios in reported experiments.

3 K-th Order Models

PPM [8,15] is a statistical compressor that models the character frequencies
according to the context given by the k characters preceding it in the text (this
is called a k-th order model), as opposed to Huffman that does not consider the
preceding characters. Moreover, PPM is adaptive, so the statistics are updated
as the compression progresses. The larger k is, the more accurate the statistical
model and the better the compression will be, but more memory and time will
be necessary to compress and uncompress it. More precisely, PPM uses k + 1
models, of order 0 to k, in parallel. It usually compresses using the k-th order
model, unless the character to be compressed has never been seen in that model.
In this case it switches to a lower-order model until the character is found. The
coding of each character is done with an arithmetic compressor, according to the
computed statistics at that point.

The BWT [6] is a reversible permutation of the text, which puts together
characters having the same k-th order context (for any k). Local optimization
(for example, move-to-front followed by Huffman) over the permuted text ob-
tains results similar to k-th order compression. PPM and BWT usually achieve
better compression ratios than other families (around 20% on English texts),
yet they are much slower to compress and decompress, and cannot uncompress
arbitrary portions of the text collection. Well known representatives of this fam-
ily are Seward’s bzip2, based on the BWT, and Shkarin/Cheney’s ppmdi and
Bloom/Tarhio’s ppmz, two PPM-based techniques.

In [13] the block-sorting algorithm of the BWT is extended to word-based
models, including other transformations, like spaceless words mentioned above,
in order to improve the compression. Experimental results show that the com-
bination of word-based modelling, BWT and MTF-like transformations allows
good compression effectiveness to be attained within reasonable resource costs.

A dictionary mapping on PPM modelling is described in [1]. This scheme is
simple and efficient and allows words to be managed in PPM modelling when
a natural language text file is being compressed. The main idea for managing
words is to assign them codes to make them easier to manipulate and it also uses
the spaceless words concept. Reported results show an excellent compression for
natural language texts.

4 Edge-Guided Text Compression

4.1 Definitions

A graph describes a set of connections between objects. Each object is called
a vertex or node. The connections themselves are called edges. Then, a graph
consists of vertices and edges connecting certain pairs of vertices.
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An ordered pair is a collection of two objects such that one can be distinguished
as the first element and the other as the second element. An ordered pair with
first element x and second element y is often written as (x, y) and defined as
(x, y) := {{{x}, ∅}, {{y}}}. Therefore, ordering is significant in an ordered pair
and consequently a pair of objects (x, y) is considered distinct from (y, x) for
x �= y. In graph theory, the first vertex in a directed edge is called the source
and the second vertex is called the destination.

Let V be a set of vertices and A a set of ordered pairs of vertices, called arcs
or directed edges. Then, a directed graph or digraph, short for directed graph, G
is an ordered pair G := (V, A) where V is the set that contains all the vertices
that form G and A is the set that contains all the arcs that form G. The degree
of a vertex in a graph is the number of edges connected to the vertex. If the
graph is a directed graph the in-degree of ν ∈ V is the number of arcs where ν
is the destination and the out-degree of ν ∈ V is the number of arcs where ν is
the source.

4.2 Edge-Guided Compression Algorithm

In this section we describe the algorithm that allows the text to be transformed
in agreement with the edge-guided technique in conjunction with the spaceless
words transformation explained in Section 2. The result of these transformations
is a byte-stream that has to be codified by some well-known encoder. Since this
stream is PPM-friendly we selected a PPM family encoder.

Algorithm 1 . (Edge-Guided Compression Algorithm)

V ← A ← ∅
current ← START VERTEX
while (there are more words) do

word ← get word()
if vertex labeled(word) ∈ V

then
destination ← V.vertex labeled(word)
arc ← (current, destination)
if arc �∈ A then

A ← A ∪ {arc}
Encode(NEW ARC(arc))

else
Encode(FOLLOW(arc))

fi
else

destination ← new vertex labeled(word)
arc ← (current, destination)
V ← V ∪ {destination}
A ← A ∪ {arc}
Encode(NEW VERTEX(destination))

fi
V.Update(α, destination)
A.Update(arc)
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current ← destination
od

Algorithm 1 shows a generic scheme for compressing the text using the edge-
guided compression. The algorithm codifies operations on a graph, within this
range the algorithm transforms the text and codifies this transformed text. In
order to codify the text a PPM encoder is used.

Let us suppose that we are using graph G := (V, A) for compressing a natural
language text with the algorithm. At a certain time c ∈ V is the current node,
when the next word, ω, is reached three possible situations can happen:

– ω appeared previously and, at some time, also preceded by the word repre-
sented by c. In this case, it is necessary to follow the arc connecting both
vertices and a FOLLOW codification is carried out.

– ω appeared previously but in the past it was never preceded the word rep-
resented by c. In this case, it is necessary to create a new arc taking c as the
source vertex and which destination is the vertex representing ω. A NEW_ARC
codification is carried out, which represents the creation of this arc and to
follow it to the destination vertex.

– ω is reached for the first time. In this case, it is necessary to create a new
vertex, ν, representing ω and a new arc taking c as source vertex and ν as
destination vertex. A NEW_VERTEX codification is carried out, which repre-
sents the creation of the new vertex, the creation of the arc and to follow it
to the created vertex.

Natural language texts obey the Zipf and Heaps empirical laws: Zipf law
observes that the relative frequency of the i-th most frequent word is 1/iθ, for
some 1 < θ < 2 [16,3]. Heaps law establishes that the number of different words
in a text of n words is O(nβ), for some β between 0.4 and 0.6 [10,3], typically
close to O(

√
n). Thus, the model size grows sublinearly with the collection size.

In addition, many vertices will have in-degree and out-degree equal to 1 because
they represent words that only appear a single time. On the other hand, the
stopwords will be represented by vertices whose in-degree and out-degree will be
very high but many arcs that arrive/leave these vertices leave/arrive to vertices
with out-degree/in-degree equal to 1.

In order to save memory and improve the process time of the algorithm we
propose several improvements that allow the graph to be dynamically handled
according to the words that are reached. The idea behind these improvements is
to fix a maximum value, α, for the out-degree of each vertex, that is, the model
is limited restricting the number of arcs that leave each vertex. The idea behind
this decision is to remove from the graph those arcs that will probably never
be used in the future and once a word is represented in the graph it is codified
by either its vertex identifier or by a dynamically changing arc identifier in the
source vertex.

When the maximum value α is reached in a vertex ν ∈ V and a new arc is
due to be inserted we must remove an arc of A whose source vertex is ν before
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(C)(B)(A)
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NEW_ARC( 1 )

NEW_VERTEX("a")

NEW_VERTEX("is") FOLLOW( 0 )

FOLLOW( 0 )

Fig. 1. Example graph generation and encoding when Algorithm 1 is used. Shaded
nodes represent the current node.

inserting the new arc. The decision to select the arc that will be removed is not
trivial which is why we propose two policies that allow this arc to be selected:
the least-recently used arc and the least-frequently used arc. The least-recently
used (LRU) policy selects the arc that has locally been more time without being
followed. The least-frequently used (LFU) selects the arc that has locally been
used less. Both policies reorganize the identifiers of the arcs and have well-known
advantages and drawbacks and therefore the election of the policy, as well as the
parameter α, will depend on the empirical results. In Algorithm 1 these actions
are carried out in the Update sentences.

4.3 Example

Let us assume that we are compressing the sentence “for a rose, a rose is
a rose” using Algorithm 1. Figure 4.3 shows graphically how the algorithm
works step by step. For each step the generated graph and the codification type
with real value (in italic) are shown. The process begins with an empty graph
and then the first word, “for”, is processed, a vertex is created. This vertex
contains the word, a global numeric identifier (#0 for the first vertex) used in
the encode process and a counter representing the number of times that this
vertex has been reached (1 for the first time). The new vertex is inserted into
the graph and becomes the current vertex (graph A).

Graph B is formed when next word, “a”, is processed and this word is the
first time it appears. In this situation it is necessary to create a new vertex
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and a new directed edge from current to created vertex. A directed edge contains
a local numeric identifier with regard to the source vertex and a counter storing
the times that the process has passed this edge. These two values are very useful
when the update of edges or vertices is done. A similar behavior happens when
both following words, “rose” and the separator “,_”, are reached (graphs C
and D).

Now, the word “a” appears again and in this case an edge is created from
vertex #3 to vertex #1 and the counter of the latter vertex is updated (graph
E). The next word, “rose”, has previously appeared and also an edge exists from
the current vertex to vertex #2. Therefore, it is only necessary to update the
counter of the destination vertex and the counter of the edge it takes to reach
it (graph F).

The next word, “is”, has not appeared before and then a new vertex and a
new edge must be created (graph G). Finally, words “a” and “rose” are reached
again and in the same order, for this reason it is only necessary to update the
corresponding information in vertices and in edges (graphs H and I).

5 Evaluation

Tests were carried out on the SuSE Linux 9.3 operating system, running on a
computer with a Pentium IV processor at 1.2 GHz and 384 megabytes of RAM.
We used a g++ compiler with full optimization. For the experiments we selected
different size collections of WSJ, ZIFF and AP from TREC-31 [9]. In order to
have heterogenous natural language texts we selected these three collections and
we concatenated files so as to obtain approximately similar subcollection sizes
from each collection, so the size in megabytes is approximate. With the purpose
of testing the edge-guided compression itself we implemented a basic prototype,
called edppm, and we use it to empirically analyze our technique and evaluate
its performance. In this prototype we used the Shkarin/Cheney’s ppmdi [15]
encoder in order to obtain comparable results with the compressors mentioned
below.

In Figure 2 we can see a comparison of the relationship between average
compression and parameter α (the maximum out-degree value for each vertex)
when least-recently used (LRU) and least-frequently used (LFU) policies are
applied respectively. Both Figures are used to see graphically which is the best
policy and which is the recommended value of α. When α is small a similar
compression is obtained but as α increases policy LFU is better than policy
LRU, improving compression on LRU by 8.5%. On the other hand, the LFU
policy algorithm presents a higher asymptotical upper bound than the LRU
algorithm and therefore LFU is about 30% slower than LRU but uses 1% less
memory than LRU.

Then, let us focus on the LFU policy in order to obtain empirically the rec-
ommended value of α and compare it with other systems. In Figure 2 we can

1 http://trec.nist.gov/



Edge-Guided Natural Language Text Compression 21

 1.85

 1.9

 1.95

 2

 2.05

 2  4  6  8  10

C
om

pr
es

si
on

 (
B

P
C

)

Maximum out-degree value (Powers of 2)

1 Mb
5 Mb

10 Mb
20 Mb
40 Mb
60 Mb

100 Mb

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2  4  6  8  10

C
om

pr
es

si
on

 (
B

P
C

)

Maximum out-degree value (Powers of 2)

1 Mb
5 Mb

10 Mb
20 Mb
40 Mb
60 Mb

100 Mb

Fig. 2. Relationship between maximum out-degree value and average compression for
LRU (above) and LFU (underneath) policies for each collection size. X-axis represents
powers of two values.

observe in underneath graph that the compression is better for greater values
of α and for values from 27 the compression remains roughly stable for medium
collections. Therefore, in order to compare our prototype with other compressor
systems we selected α = 27 to look for a balance between time and memory re-
quirements and compression since our algorithm is O(αn) and Ω(n log n), where
n is the number of vocabulary words.

Next, we compressed different size collections of WSJ, ZIFF and AP from
TREC-3 in order to verify the behavior of the algorithms when managing medium
and large collections. TREC-3 collections are formed by semistructured docu-
ments, this can harm the edppm prototype but allows us to compress documents
with structure-aware compressors that obtain better compression than classical
compressors.
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Therefore, we compressed the collections with several general compressor sys-
tems: (1)GNU gzip v.1.3.5 2 , which use LZ77 plus a variant of the Huffman
algorithm (we also tried zip with almost identical results but slower processing);
(2)bzip2 v.1.0.2 3 , which uses the Burrows-Wheeler block sorting text compres-
sion algorithm, plus Huffman coding (where maximum compression is the de-
fault); (3)mppm v.0.90 4 [1], is a simple and efficient general scheme for compress-
ing natural language text documents by extending the PPM to allow easy word
handling using an additional layer. (4)ppmdi, extracted from xmlppm v.0.98.2,
the same PPM compressor used in xmlppm, scmppm, edppm and in our prototype
and with the same parameters.

On the other hand, we compressed the collections with other compression sys-
tems that exploit text structure: (1)xmill v.0.8 5 [11], an XML-specific compres-
sor designed to exchange and store XML documents. Its compression approach
is not intended to directly support querying or updating of the compressed docu-
ments. xmill is based on the zlib library, which combines Lempel-Ziv compression
with a variant of Huffman. Its main idea is to split the file into three components:
elements and attributes, text, and structure. Each component is compressed sep-
arately. (2)xmlppm v.0.98.2 6 [7], a PPM-like coder, where the context is given
by the path from the root to the tree node that contains the current text. This is
an adaptive compressor that does not permit random access to individual doc-
uments. The idea is an evolution over xmill, as different compressors are used
for each component, and the XML hierarchy information is used to improve
compression. (3)scmppm v.0.93.3 7 [2], that implements SCM, a generic model
used to compress semistructured documents, which takes advantage of the con-
text information usually implicit in the structure of the text. The idea is to use
a separate model to compress the text that lies inside each different structure
type. Like xmlppm, scmppm uses Shkarin/Cheney’s ppmdi [15] compressors.

Word-based BWT compression was excluded because we could not find the
software, yet results reported in [13] indicate that the compression ratios achieved
for small collections are slightly worse than those of mppm. However, in order to
be able to compare them, it is necessary to make more tests, mainly with files
of greater size.

Table 1 shows the compression obtained with standard systems, structure-
aware compressors and our edppm prototype for TREC-3 collections. Comparing
with general compressor systems we can observe that the gzip obtained the
worst compression ratios, not competitive in this experiment. It is followed by
bzip2 with a greater difference between it and gzip. The ppmdi, the base for the
mppm and edppm compressors, obtains better compression but with compression
ratios near to bzip2. The best general compressor is mppm with a very good

2 http://www.gnu.org
3 http://www.bzip.org
4 http://www.infor.uva.es/∼jadiego
5 http://sourceforge.net/projects/xmill
6 http://sourceforge.net/projects/xmlppm
7 http://www.infor.uva.es/∼jadiego
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Table 1. Compression (bpc) for selected compressors for each TREC-3 collection

Mbytes gzip bzip2 ppmdi mppm xmill xmlppm scmppm edppm

TREC-AP

1 3.010 2.264 2.114 1.955 2.944 2.110 2.083 2.103
5 3.006 2.193 2.057 1.848 2.910 2.052 2.000 1.928

10 2.984 2.175 2.047 1.823 2.893 2.040 1.977 1.877
20 2.970 2.168 2.041 1.801 2.877 2.036 1.963 1.825
40 2.978 2.172 2.045 1.796 2.883 2.040 1.964 1.788
60 2.983 2.174 2.046 1.795 2.888 2.044 1.964 1.770

100 2.987 2.178 2.050 1.797 2.891 2.048 1.968 1.757
Mbytes gzip bzip2 ppmdi mppm xmill xmlppm scmppm edppm

TREC-WSJ

1 2.965 2.195 2.048 1.932 2.898 2.044 2.030 2.045
5 2.970 2.148 2.034 1.857 2.878 2.029 1.984 1.901

10 2.970 2.154 2.033 1.832 2.881 2.028 1.972 1.851
20 2.973 2.153 2.035 1.820 2.882 2.030 1.971 1.806
40 2.977 2.158 2.040 1.814 2.888 2.035 1.974 1.768
60 2.983 2.160 2.043 1.814 2.891 2.038 1.975 1.751

100 2.979 2.148 2.032 1.801 2.872 2.027 1.958 1.727
Mbytes gzip bzip2 ppmdi mppm xmill xmlppm scmppm edppm

TREC-ZIFF

1 2.488 1.863 1.686 1.652 2.489 1.682 1.743 1.797
5 2.604 1.965 1.803 1.691 2.596 1.799 1.782 1.794

10 2.640 2.000 1.837 1.708 2.634 1.834 1.803 1.790
20 2.647 2.012 1.850 1.710 2.640 1.846 1.812 1.771
40 2.649 2.013 1.851 1.706 2.639 1.847 1.808 1.738
60 2.648 2.010 1.849 1.701 2.635 1.846 1.803 1.719

100 2.654 2.016 1.853 1.706 2.640 1.849 1.807 1.706

compression. Our edppm prototype compressed significantly better than general
compressors. It improves gzip by up to 72%, bzip by up to 24%, ppmdi by up to
17% and mppm by up to 4%.

Comparing with structure-aware compressors we can observe that the xmill
obtains an average compression roughly constant in all cases because it uses
zlib as its main compression machinery, and like gzip, its compression is not
competitive in this experiment. On the other hand, xmlppm and scmppm obtain
a good compression, both surpassing three of four general compressors. However,
in this case, our edppm prototype also still obtains the best compression, reaching
an improvement on xmill of up to 66%, on xmlppm of up to 17% and on scmppm
of up to 13%.

A graphical representation of average compression is shown in Figure 3. In
this graph we can observe that edppm prototype is better for medium and large
collection than all compressor systems against which they have been compared.
This can be due to the penalty of handling a dynamic graph to model the natural
language which still does not have sufficient information to suitably model the
source data. On average, edppm starts to be better from 40 Mbytes, and for 100
Mbytes it improves mppm by 6.4% and ppmdi by 15%.
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Fig. 3. Average compression for each TREC-3 collection size

In view of these results, we can conclude that edppm is an excellent alternative
to compress natural language documents.

6 Conclusions and Future Work

We have proposed a new and efficient technique for compressing natural language
text documents by encoding with PPM the transformed text using the edge-
guided concept and the spaceless words transformation. When file size grows,
our proposal improves compression up to 17% with respect to the character
based PPM.

We have shown that the idea significantly improves compression and we have
compared our prototype with standard and specific compressor systems, showing
that our prototype obtains the best compression for medium and large collec-
tions, improving the compression when file size grows. An open possibility is
to test our prototype with greater size collections in order to verify the real
compression limit.

The prototype is a basic implementation and we are working on several im-
provements, which will make it more competitive. In order to improve the com-
pression, we can tune our method including a new type of codification that allows
several vertices to be followed at the same time. This is a simple matter if the
involved vertices have out-degree equal to 1.

We are currently working in a semiadaptive version of the algorithm. In the
first pass of the semiadaptive version, the graph is built. When the first pass is
finished, the graph can be optimized in different ways, for instance by collapsing
and pruning vertices. Finally, in the second pass, the text is codified using some
well-known encoder.
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Abstract. Music retrieval systems based on melodic similarity consider
sequences of notes. Adaptations of edit-based algorithms, mainly applied
in bioinformatic applications, to the musical domain lead to promising
results. However, new problems are raised when considering polyphonic
music. Existing representations of notes do not allow retrieval systems
to be transposition invariant. In this article, we propose a new dynamic
programming algorithm that permits to take into account multiple lo-
cal transpositions. Experiments with MIREX collections have been per-
formed to evaluate the improvements induced by this algorithm. The
results clearly show the contribution of this algorithm: it is confirmed as
the most accurate solution for a music retrieval system based on align-
ment algorithm to be transposition invariant.

1 Introduction

The number of audio documents available on the Internet is considerably in-
creasing. New methods for browsing, retrieving or classifying have to be pro-
posed to users. The growing Music Information Retrieval research community
identifies and explicates the problems induced by these new methods. One of
the key problems of this research area is the estimation of the musical similarity
between symbolic music data.

Measuring similarity between sequences is a well-known problem in computer
science which has applications in many fields such as computational biology,
text processing, optical character recognition, image and signal processing, error
correction, pattern recognition, etc [1,2]. However, musical sequences are char-
acterized by specific properties. That is why developing efficient and accurate
algorithms requires information about sound perception and music theory.

The notion of similarity is very difficult to precisely define, and music similar-
ity remains one of the most complex problems in the field of music information
retrieval. It may depend on the musical culture, on personal opinion, on mood,
etc. For example, two musical pieces can be evaluated as very similar, if the com-
poser, the performer, the style, the instrument, . . . are the same. Since research
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works in the domain of the musical information retrieval generally concern West-
ern music, we focus on the melodic characteristics of musical pieces because it
is one of the main characteristics of this kind of music.

Several techniques for evaluating music similarities have been introduced dur-
ing the last few years. Geometric algorithms consider geometric representations
of melodies and compute the distance between objects. Some systems [3] are
closely linked to the well-known piano-roll representation. Other geometric sys-
tems represent notes by weighted points [4]. The weight is related to the duration
of the note. Distances between such geometric representations are calculated ac-
cording to the Earth Mover’s Distance.

Another algorithm adapted from string matching domain has been proposed
in [5]. N-grams techniques involve counting the distinct terms that the query and
a potential answer have in common. This approach is very simple but appears
to be very efficient [6]. Nevertheless, the algorithm applied for the computa-
tion of the similarity measure (counting the matching subsequences) does not
take into account the musical properties of the music. For example, only two
cases are assumed, the subsequence does match or not. This limitation has sig-
nificant consequences on the quality of the retrieval system based on N-gram
techniques.

Last but not least, other existing systems are based on atomic edit opera-
tions. As our work uses this approach, it is presented later. In this article, we
propose a new dynamic progamming algorithm dealing with polyphonic musi-
cal sequences, and allowing multiple local transpositions. In the next sections,
we present the main existing representations of musical pieces and the principle
of edit operations and alignment. Section 2 is devoted to the problem of the
transposition invariance in the polyphonic context. The algorithm proposed is
detailed in section 3. Results of experiments on real databases are exposed in
section 4.

1.1 Representation of Musical Pieces

Following Mongeau and Sankoff’s model (90), any monophonic score can be
represented as a sequence of ordered pairs (pitch, duration) of each note. Thus,
the sequence (B4 B4 r4 C4 G4 E2 A2 G8) represents the example illustrated
in Figure 1.

Several alphabets of characters and set of numbers have been proposed to
represent pitches and durations [6]. The absolute pitch simply indicates the exact
pitch (MIDI notation). In order to reduce the vocabulary, this exact pitch can be
represented by their modulo-12 values. The melodic contour can also be taken
into account by using positive values when the melody moves up and negative

Fig. 1. Example of monophonic musical score
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values when it moves down. The directed modulo−12 absolute pitch sequence
corresponding to the melody represented by fig. 1 is 11,11,+0,-7,+4,-9,-7.

The exact interval representation is simply the number of half-tones between
two successive notes. This representation can also be limited with modulo-12.
Information about melodic direction can also be indicated: 0,+1,-5,+9,-7,-2.

The key relative representations indicate the difference in half-tones between
notes and the key of the melody. In the case of figure 1, the key signature
corresponds to C major. This representation can also be limited according to
modulo−12 and the information about melodic contour can be indicated:
1,1,+0,-7,+4,-9,-7. The limitations of the key relative representation is closely
linked to the correct choice of the key.

Concerning note durations, the same representations are possible: the absolute
representation simply indicates the length of the note (in sixteenth notes for
example), whereas the difference of durations between successive notes can be
expressed as duration subtraction or duration ratio [7].

1.2 Alignment, Best-Fit and Edit Distance

Measuring similarity between sequences is a well-known problem in computer sci-
ence which has applications in many fields [1,2]. In the early seventies, Needleman
and Wunsch [8] and then Wagner and Fisher [9] proposed algorithms to compute
an alignment of two strings. Given two strings q and t of lengths m and n on
alphabet Σ, an alignment of these sequences is defined as a couple of sequences
(q′, t′) of same length, on Σ ∪ {−}. If we remove the character ′−′ from q′, resp.
t′, we obtain q, resp. t. Also, q′ and t′ cannot have the letter ′−′ at the same
position. For each position, if one of the two letters is a ′−′ we have a gap. If
the letters are equal we have a match. If they are different we have a mismatch.

Now, we have a function that gives a score to each couple of letters. The score
of the alignment is equal to the sum of the score on each position in q′ and t′.
The goal is to find the alignment with the best score (the highest one), this can
be done in O(nm) with a dynamic programming algorithm.

A variant of this problem is to find the factor f of t such that the alignment
score between q and f is maximal. This problem is called “best-fit” alignment
and is computed with the same algorithm as the “global” alignment; only the
initialisation step of the algorithm changes.

Finally, the edit distance defined in [10] is equivalent to alignment. In edit
distance, we have a set of three edit operations: the substitution, the deletion
and the insertion of a letter. We assign a cost to each of these operations and
the edit distance of q and t is defined as the minimum cost of edit operations
that transform q into t.

2 Transposition Invariance

The main applications of systems that estimate the similarity between audio mu-
sical pieces are the Query-by-Humming/Singing/Whistling systems. The main
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Fig. 2. Example of a polyphonic musical score (top), a monophonic query not trans-
posed (middle) and a monophonic query characterized by two local transpositions
(bottom)

idea of these applications is to help users to retrieve musical pieces from a single
melody line (whistled, hummed or sung).

Such applications generally consider a monophonic query and a polyphonic
database. That is the reason why retrieval systems have to be able to evalu-
ate the similarity between a monophonic musical piece and a polyphonic one.
Monophonic music is assumed to be composed of only one dominant melody.
In a stricter sense, it implies that no more than one note is sounded at any
given time. In the polyphonic context, more than one note can sound at a given
time. Fig 2 shows an example of a polyphonic musical piece and two monophonic
queries. Query-by-humming systems have to retrieve the polyphonic piece from
any of these queries.

Furthermore, some properties of the melodic retrieval system are expected.
For instance, since a query can be transposed (one or several times), without
degrading the melody, retrieval systems have to be transposition invariant.

2.1 Limitations of the Representation of Notes in Polyphony

In the monophonic context, a few representations enable systems to be trans-
position invariant. For example, representing pitches by the difference between
successive pitches (interval representation), or, in the case of tonal music, by
the difference between the pitch and the key of the musical piece (key-relative
representation) allows the query to be transposed.

Concerning polyphonic music, the representation of pitches raises new prob-
lems. As for monophonic music, the absolute representation cannot be applied
since it does not allow transposition invariance. It is also obvious that the in-
terval and contour representations cannot be applied in the polyphonic context,
since several notes may sound at the same time. Moreover, when considering
the key-relative representation, the condition of transposition invariance is the
before-hand knowledge of the key of the musical pieces studied. A false estimation
of the key, or a bad choice leads to high errors in the similarity measurement.

One can conclude that no pitch representation correctly enables retrieval poly-
phonic music systems to be transposition invariant. A new approach has to be
proposed, independent from the note representation chosen. We give an original
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algorithm which permits retrieval systems based on alignment to deal with trans-
posed polyphonic music.

2.2 Multiple Local Transpositions

Some applications relying on music retrieval systems consider queries that are
produced by human beings. These queries can not only be totally transposed,
but also can be composed of several parts that are independently transposed. For
example, if the original musical piece searched is composed of different harmonic
voices, the user may sing different successive parts with different keys. Pieces
of popular music are sometimes composed of different choruses sung based on
different tonic. A sung query may imitate these characteristics.

Moreover, errors in singing or humming may occur, especially for common
users that are not used to perfectly controlling their voice like professionnal
singers. From a musical point of view, sudden tonal changings are disturbing.
But, if these changes sound during a long time, they may not disturb listeners.

Fig 2 shows an example of query that is characterized by two local transpo-
sitions. This piece sounds very similar to the polyphonic piece, whereas the two
resulting sequences are very different whatever the representation of notes cho-
sen. That are the reasons why we propose an algorithm that allows edit based
algorithms to take into account successive local transpositions.

3 Algorithm

We start with a few basic definitions and then we give a formal definition of
the problem. We then proceed with the description of a dynamic programing
algorithm, followed by an improvement and a demonstrative example.

3.1 Definitions and Problem

For the rest of the article, let Σ be a set of sets of integers. Its size is |Σ|. Let q
and t be two texts over Σ. Thus q and t can be polyphonic, since each letter of
Σ can represent a note (set with single value) or a chord.

For the sake of simplicity, we do not include here additional information such
as note or chord duration, sound level etc.

We denote by |s| the length of any text s. The i+1th letter of s = s0s1 . . . s|s|−1

is si for all i ∈ [0..|s| − 1], The subword sisi+1 . . . sj of s is denoted by si...j . For
any set Γ ⊆ Σ and integer v, Γ + v is the set {γ ∈ Γ : γ + v}.

A local transposition h over a text s is represented by triplet h = (b, v, e) such
that, {b, e} ∈ [0, |s|−1] and v is an integer. Applying h to s consists in building a
new string s′ of length |s| such that s′i = si for all i �∈ [b, e] and s′i = si + v for all
i ∈ [b, e]. Thus h represents a change of the pitch level of consecutive chords in s.

Definition 1 (Covering Transposition). A series of local transpositions T =
{(bi, vi, ei)} (order by bi) is said to be a covering transposition of a given text
s if b0 = 0, bi = ei−1 + 1, ∀ i > 0 and e|T |−1 = |s| − 1. That is, the local
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transpositions in T are consecutive and cover all the positions of s. We denote
s→T the text obtained by successively applying each transposition of T to s.

Last, we make use of a function called alignment(q, t) that computes the align-
ment score between q and t. We choose the alignment concept but the algorithm
can be easily adapted to work with the edit distance.

Now, given a query q and a text t, our aim is to find a covering transposition
T on q such that, the alignment score between t and q→T is optimal.

Problem 1 (Alignment with local transpositions). Given a query q and a text
t over Σ, an alignment function alignment(u, v) and a number M ≤ 0, the
problem is to find alignment of q and t with local transpositions:

LTalignment(q, t) = max
T

{alignment(q→T , t) + (|T | − 1) ∗ M}

The value M is a malus used to control the gain provided by a transposition.
Note that if M = −∞ the solution consists in computing the alignment with q
entirely transposed by the same value. If M is equal to zero, the best solution
consists in transposing each of the letters of q to match letters of t.

Finally, the problem is defined for both “global” alignment and “best fit”
variants of the problem. It can be easily adapted to the local alignment problem
using the same technique presented in [11].

3.2 Algorithm

We now present a dynamic programming algorithm to answer this problem. Ba-
sically, it consists in computing simultaneously the alignment matrices between
t and all possible transpositions of q. At each position in each matrix, we con-
sider, if it is better to continue with the current transposition or to start a new
transposition from another matrix. Let score(α, β) be the scoring function used
for the alignment.

Beforehand we have to compute all interesting transposition values. This con-
sists in finding all values v such that there exist letters α, β occuring in q, t such
that score(α + v, β) ≥ 0. We call ΔT a sorted array containing these values.

Now, we fill |ΔT | matrices M i using a dynamic programming algorithm. Each
matrix M i corresponds to the alignment with local transpositions of a prefix of
the query with a prefix of the text such that the last transposition applied to the
query is about ΔT [i]. More formally, the value M i[r][c] corresponds to the best
alignment with local transposition between t0...c and q0...r with the restriction
that the last transposition applied to q0...r is ΔT [i]. The size of the matrices is
(|q| + 1) × (|t| + 1) as we place the query vertically and the text horizontally.

Following is the recurrence formula used to fill the matrices:

M i[r][c] = max

⎧
⎪⎪⎨

⎪⎪⎩

M i[r − 1][c] + score(qr−1 + ΔT [i], ε)
M i[r][c − 1] + score(ε, tc−1)
M i[r − 1][c − 1] + score(qr−1 + ΔT [i], tc−1)
M j [r − 1][c − 1] + score(qr−1 + ΔT [i], tc−1) + M, for j �= i
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This formula is illustrated by fig. 3. The first and second cases correspond to
a gap in the query or the text. The third corresponds to a substitution between
the letter qr−1+ΔT [i] and tc−1. Finally, we look for starting a new transposition
from one of the other matrices. Depending on the scoring scheme that we will
show later, this can be optimised. The proof of correctness is not given here as
it is similar to Dan Gusfield’s proof in [2] page 218.

Fig. 3. Illustration of the recurrence formulae to fill the case M i[r][c]: 1 a gap in the

query or 2 in the text, 3 substitution between qr−1 + v and tc−1 (v = ΔT [i]), 4
starting a new transposition with value v by coming from another matrix.

The initialisation of the matrices described on algorithm 1 depends on the
variants of the problem. If we are computing a “global” alignment, then the line
6 is used. For the “best-fit” variant of the problem, the line 7 is used.

Algorithm 1. Initialisation of matrix M i

1: M i[0][0] = 0
2: for r from 1 to |q| do
3: M i[r][0] = M i[r − 1][0] + score(q[r − 1] + ΔT [i], ε)
4: end for
5: for c from 1 to |t| do
6: M i[0][c] = M i[0][t − 1] + score(ε, t[c − 1]) // global alignment case
7: M i[0][c] = 0 // best fit case
8: end for

Algorithm 2 gives the pseudo-code used to fill the matrices. The value of the
alignment with local transpositions between q and t is maxi(M i[r][c]) (bottom
right corner) for the global alignment and maxi,k(M i[r][k]) (bottom row) for the
best fit problem.

The complexity of this algorithm is O(|ΔT |2 ∗|q|∗ |t|) in time and O(|ΔT |∗ |q|)
in space. It is possible to significantly improve the running time by skipping the
loop at line 8 to 10 that is, the part where we look for a new local transposition.

3.3 Improvement

Assume that at line 6, the substitution score between the letter in the query
transposed and the letter in the text is the worst possible. Normally we should
start a new transposition by coming from matrix j. But there is no reason is
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Algorithm 2. Fill the matrices
1: for r from 1 to |q| do
2: for c from 1 to |t| do
3: for i from 0 to |ΔT | do
4: del = M i[r − 1][c] + score(qr−1 + ΔT [i], ε)
5: ins = M i[r][c − 1] + score(ε, tc−1)
6: subscore = score(qr−1 + ΔT [i], tc−1)
7: sub = M i[r − 1][c − 1] + subscore
8: for j from 0 to |ΔT | ; j �= i do
9: sub = max(M j [r − 1][c − 1] + subscore + M ; sub)

10: end for
11: M i[r][c] = max(del, ins, sub)
12: end for
13: end for
14: end for

to start this new transposition as the substitution played in matrix j will lead
to a score equal or better. If the scoring scheme is constant for the substitution
(fixed value for a match and fixed value for a mismatch), then it is equivalent to
state that each local transposition must start by a match.

To implement this improvement, for each letter in t, we compute in array
named WS, the worst score with all possible letters of q including the ones
obtained by transposition. This can be computed during the same time ΔT is
built. Now the line 8 to 10 are replaced by:

if subscore > WS[tc−1] then
for j from 0 to |ΔT | ; j �= i do

sub = max(M j [r − 1][c − 1] + subscore + M ; sub)
end for

end if

In the constant scoring scheme and if the query and the text are monophonic
the time complexity becomes O(|ΔT | ∗ |q| ∗ |t|).

3.4 Demonstrative Example

We present a simple example to illustrate the algorithm. For the query we take
the second and third bars of the monophonic version of “brother john” and for
the text we take the same bars of the polyphonic version of “brother john”.

We represent all notes by their pitch level modulo 12, that is C is 0 and B is
11. Thus the size of ΔT is bounded by 12. So the query q is represented by the
sequence {9} {11} {1} {9} {4} {5} {7} and the text t is {5} {0, 7} {5, 9} {0, 5}
{5, 9} {0, 7, 10} {5, 9, 0}.

The scoring function we use is basic, we consider that we have a match if the
note of the query occurs in the chord of the text:

score(α, β) =
{

+2 if α ∈ β
−1 if α �∈ β or α = ε or β = ε
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For the practical implementations, we used a more sophisticated scoring scheme,
presented in the next section.

For this example, the algorithm builds 12 matrices one for each of the twelve
possible transposition (from 0 to 11). We represent below the matrices for the
transposition value 8 and 5, the malus M is −3.

The score of the global alignment with local transpositions is 11 and the
covering transposition is T = {(0, 8, 3), (4, 5, 6)}. This corresponds to the score
of the alignment of q→T = {5} {7} {9} {5}-{9} {10} {0} with t which is 14
minus 3 (one malus). On these matrices, we put in bold the values, where we
look for the other matrices to start a new local transpositions. The backtrace is
shown by the surrounded values.

10 9
Δ[i] = 8 7 9 5 9 7 5

ε 5 0 5 0 5 0 0

ε 0 -1 -2 -3 -4 -5 -6 -7

9+8=5 -1 2 1 0 -1 -2 -3 -4
11+8=7 -2 1 4 3 2 1 0 -1

1+8=9 -3 0 3 6 5 4 3 2
9+8=5 -4 -1 2 5 8 7 6 5
4+8=12 -5 -2 1 4 7 7 6 5

5+8=1 -6 -3 0 3 6 6 6 5

7+8=3 -7 -4 -1 2 5 5 5 4

10 9
Δ[i] = 5 7 9 5 9 7 5

ε 5 0 5 0 5 0 0

ε 0 -1 -2 -3 -4 -5 -6 -7

9+5=2 -1 -1 -2 -3 -4 -5 -6 -7

11+5=4 -2 -2 -2 -3 -4 -5 -6 -7

1+5=6 -3 -3 -3 -3 -4 -5 -6 -7

9+5=2 -4 -4 -4 -4 -4 -5 -6 -7

4+5=9 -5 -5 -5 1 0 7 6 5
5+5=10 -6 -6 -6 0 0 6 9 8

7+5=0 -7 -7 -4 -1 2 5 8 11

4 Experiments

One of the main problems in the music information retrieval domain is the prob-
lem of the evaluation of the system proposed. The first Music Information Re-
trieval Evaluation eXchange (MIREX) [12] is a contest whose goal is to compare
state-of-the-art algorithms and systems relevant for Music Information Retrieval.
During this first contest, an evaluation topic about symbolic melodic similarity
has been performed. Participants have discussed the process of evaluation and
proposed an evaluation procedure. The experiments presented in this paper are
based on the MIREX procedures.

4.1 Scoring Scheme

We used the same scoring scheme as the ones we introduce in [13]. Mainly,
the score between two notes takes into account the pitch, the duration and the
consonance of notes. For example, the fifth (7 semitones) and the third major
or minor (3 or 4 semitones) are the most consonant intervals in Western music.
By consequence, these intervals are encouraged.

As we limit our experiments to monophonic queries, the score between a note
and a chord is equal to the best score between the note and each note of the
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chord. The development of pertinent scoring functions for systems considering
polyphonic queries remain an open problem.

4.2 Monophonic Music

The MIREX 2005 database is the RISM A/II (International inventory of musi-
cal sources) collection, which is composed of one half-million notated real world
compositions. The incipits are symbolically encoded music. They are monophonic
and contain between 10 and 40 notes. 11 incipits have been randomly chosen.
A ground truth has been established [14] by combining ranked lists that were
created by 35 music experts. A specific measure has been proposed: the Av-
erage Dynamic Recall (ADR) [15]. It takes into account the ranked groups of
the ground truth by indicating how many of the documents that should have
appeared before or at a given position in the result list actually have appeared.
The higher the ADR measure is, the more accurate the tested system is.

The goal of the first experiments we have performed is to verify that the
algorithm proposed in this paper improves the quality of music retrieval systems
for monophonic musical pieces. The results of the symbolic melodic similarity
contest that was proposed during MIREX 2005 are presented in Tab. 1 and can
be compared to the ones obtained by our retrieval system considering interval
and key relative representations for pitch, and by applying the local transposition
algorithm described in this paper.

Table 1. Results of the evaluation of retrieval systems based on alignment during
MIREX 2005 compared to the results obtained by a edit-distance based retrieval system
with or without the algorithmic improvement proposed

Algorithm average ADR

Local transposition algorithm 77.1

key relative representation 60.6

interval representation 76.8

Edit distance I/R (Grachten) 66

Edit distance (Lemstrm) 54

At first sight, results seem disappointing because tab. 1 does not show any
better result when applying the local transposition algorithm. In this case, the
average ADR is 77, whereas it is respectively 61 and 77 when considering the
key relative and interval representations, and without applying the algorithm
presented. But it is important to note that the application of the local transpo-
sition algorithm does not require any knowledge about the musical pieces tested,
at the contrary of the key relative representation. One of the conclusion of these
experiments is the accuracy of the local transposition algorithm, since it obtains
at least the same results as systems considering interval representations obtain.
Moreover, one of the improvements of our algorithm is that it allows multiple
local transpositions. However, the MIREX 2005 queries are too short to permit
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to highlight these improvements: for short queries, two local transpositions imply
a too important perceptual dissimilarity.

4.3 Polyphonic Music

During MIREX 20061, the second task of the symbolic melodic similarity contest
consisted in retrieving the most similar pieces from mostly polyphonic collec-
tions given a monophonic query. Two collections was considered, and 11 queries
(hummed or whistled) was proposed. The mixed collection is composed of 10000
randomly picked MIDI files that were harvested from the Web and which in-
clude different genres. The karaoke collection is composed of about 1000 .kar
files (Karaoke MIDI files) with mostly Western popular music. Tab. 2 presents
the results obtained with these two collections. Since only a few algorithms have
participated to the MIREX 2006 contest, we think that the ground truth es-
tablished is not significant. That’s why we propose to evaluate our algorithm
according to two measures: the average precision, and the precision at N docu-
ments (N is the number of relevant documents).

Table 2. Average Precision (AP) and Precision at N Documents (PND) obtained
by edit-distance based retrieval systems with or without the algorithmic improvement
proposed for MIREX 2006 databases and queries (absolute representation, key relative
representation, absolute representation with local tranposition algorithm and algorithm
submitted by Uitdenbogerd during MIREX)

Collection Absolute Key rel. Local Transp. Uitdenbogerd

Karaoke AP 0.20 0.35 0.78 0.36
PND 0.20 0.40 0.83 0.33

Mixed AP 0.21 0.16 0.67 0.52
PND 0.20 0.17 0.66 0.55

Results presented in Tab. 2 clearly show that the algorithm proposed allow-
ing multiple transpositions improves retrieval systems. Concerning the karaoke
collection, the average precision obtained is near 0.80 whereas it is only 0.20
when considering the absolute representation without the algorithm proposed,
and only 0.35 when considering the key-relative representation. This significant
difference is also observed for the mixed collection. The average precision is 0.67
instead of 0.21 or 0.0. The main justification is the lack of reliable representation
for pitch in polyphonic music. As explained previously, errors in key estimation
imply limitations for the key relative representation. That is why existing sys-
tems based on alignment remain limited. For example, the algorithm submitted
to the MIREX 2006 by Uitdenbogerd [16] respectively obtains 0.52 and 0.36. The
algorithm we proposed computes the transposition that allows the best match
between musical pieces. It seems to be a great solution to this problem of rep-
resentation of notes for polyphonic music. For now, to our knowledge, no other
solution as accurate as this one exists.
1 http://www.music-ir.org/mirex2006/index.php/MIREX2006 Results

http://www.music-ir.org/mirex2006/index.php/MIREX2006_Results
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5 Discussion and Conclusion

In this paper, we proposed a new algorithm which allows music similarity sys-
tems based on alignment to take into account multiple local transpositions. The
experiments presented show that this improvement increases the accuracy of re-
trieval systems in both monophonic and polyphonic contexts. It is important to
note that time computation added by the algorithm is significant and may be
justified only for long queries in the monophonic context.

Also, we think it is possible to improve the running time of the algorithm by
filtering the set of interesting transpositions ΔT . For example, on the alignment
given in section 3.4 it would be possible to not compute matrix for value 7
because this transposition value brings only one match.

Finally, the system proposed for comparing polyphonic musical sequences has
to be improved. The algorithm submitted by Typke [17] during MIREX 2006
obtains better results with different techniques. We aim at improving our system
in order to reach the same accuracy.
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Abstract. Recently, a new pattern matching paradigm was proposed,
pattern matching with address errors. In this paradigm approximate
string matching problems are studied, where the content is unaltered
and only the locations of the different entries may change. Specifically, a
broad class of problems in this new paradigm was defined – the class of
rearrangement errors. In this type of errors the pattern is transformed
through a sequence of rearrangement operations, each with an associated
cost. The natural �1 and �2 rearrangement systems were considered. A
variant of the �1-rearrangement distance problem seems more difficult
– where the pattern is a general string that may have repeating sym-
bols. The best algorithm presented for the general case is O(nm). In
this paper, we show that even for general strings the problem can be
approximated in linear time! This paper also considers another natural
rearrangement system – the �∞ rearrangement distance. For this new
rearrangement system we provide efficient exact solutions for different
variants of the problem, as well as a faster approximation.

1 Introduction

The historical challenge of approximate pattern matching was coping with er-
rors in the data. The traditional Hamming distance problem assumes that some
elements in the pattern are erroneous, and one seeks the text locations where
the number of errors is sufficiently small [1,2,3], or efficiently calculating the
Hamming distance at every text location [4,1,5]. The edit distance problem adds
the possibility that some elements of the text are deleted, or that noise is added
at some text locations [6,7]. Indexing and dictionary matching under these er-
rors has also been considered [8,9,10,11]. The implicit assumption in all these
problems is that there may indeed be errors in the content of the data, but the
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order of the data is inviolate. Data may be lost or noise may appear, however,
the order of the data was assumed to be ironclad.

Nevertheless, some non-conforming problems have been gnawing at the walls
of this assumption. The swap error, motivated by the common typing error
where two adjacent symbols are exchanged [12], does not assume error in the
content of the data, but rather, in the order. However, here too the general
order was assumed accurate, with the difference being at most one location away.
The advent of computational biology has added several problems wherein the
“error” is in the order, rather than the content. During the course of evolution,
whole areas of genome may translocate, shifting from one location in genome to
another. Alternatively, two pieces of genome may exchange places. These cases
represent a situation where the content of the individual entries does not change,
but rather their locations may be different. Several works have considered specific
versions of this biological setting, primarily focusing on the sorting problem
(sorting by reversals [13,14], sorting by transpositions [15], and sorting by block
interchanges [16]).

Motivated by these questions, a new pattern matching paradigm was pro-
posed, pattern matching with address errors [17]. In this paradigm approximate
string matching problems are studied, where the content is unaltered and only
the locations of the different entries may change. This new approximate match-
ing model opens a whole new world of problems and introduces new techniques
to the field of pattern matching (see [18], [19]). Specifically, [17] defined a broad
class of problems in this new paradigm – the class of rearrangement errors. In this
type of errors the pattern is transformed through a sequence of rearrangement
operations, each with an associated cost. The cost induces a distance measure
between the strings, defined as the total cost to convert one string to the other.
Given a pattern and a text, the problem is to find the subsequence of the text
closest to the pattern. [17] consider several natural distance measures, including
the analogues of the �1 and �2 distances, as well as two interchange measures.
For these, they provide efficient algorithms for different variants of the associated
string matching problems.

A variant of the �1-rearrangement distance problem seems more difficult –
where the pattern is a general string (i.e. strings that may have repeating sym-
bols). [17] present a linear time algorithm for the problem where the pattern
is a string with distinct letters, however, the techniques used fail in the general
pattern case. The best algorithm presented for the general case is O(nm). In this
paper, we show that even for general strings the problem can be approximated
in linear time! Our solution utilizes properties of p-stable distributions to derive
a very efficient approximation to this problem.

In addition, another natural rearrangement system – the �∞ rearrangement
system – is considered in this paper for the first time. For this new rearrange-
ment system we provide efficient exact solutions for different variants of the
problem, as well as a faster approximation algorithm. Formal definitions of the
rearrangement pattern matching problems are given below.
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Rearrangement Distances. Consider a set A and let x and y be two m-tuples
over A. [17] formally defined the process of converting x to y through a sequence
of rearrangement operations in the following way. A rearrangement operator π
is a function π : [0..m − 1] → [0..m − 1], with the intuitive meaning being that
for each i, π moves the element currently at location i to location π(i). Let
s = (π1, π2, . . . , πk) be a sequence of rearrangement operators, and let πs =
π1 ◦ π2 ◦ · · · ◦ πk be the composition of the πj ’s. s converts x into y if for any
i ∈ [0..m − 1], xi = yπs(i). That is, y is obtained from x by moving elements
according to the designated sequence of rearrangement operations.

Let Π be a set of rearrangement operators, Π can convert x to y, if there
exists a sequence s of operators from Π that converts x to y. Given a set Π of
rearrangement operators, a non-negative cost is associated with each sequence
from Π , cost : Π∗ → R+. The pair (Π, cost) is called a rearrangement system.
Consider two vectors x, y ∈ Am and a rearrangement system R = (Π, cost), the
distance from x to y under R is defined to be:

dR(x, y) = min{cost(s)|s from R converts x to y }

If there is no sequence that converts x to y then the distance is ∞.

The String Matching Problem. Let R be a rearrangement system and let dR
be the induced distance function. Consider a text T = T [0], . . . , T [n − 1] and
pattern P = P [0], . . . , P [m − 1] (m ≤ n). For 0 ≤ i ≤ n − m denote by T (i) the
m-long substring of T starting at location i. Given a text T and pattern P , we
wish to find the i such that dR(P, T (i)) is minimal.

The �1 and �∞ Rearrangement Distances. The simplest set of rearrangement
operations allows any element to be inserted at any other location. Under the
�1 Rearrangement System, the cost of such a rearrangement is the sum of the
distances the individual elements have been moved. Formally, let x and y be
strings of length m. A rearrangement under the �1 operators is a permutation
π : [0..m − 1] → [0..m − 1], where the cost is cost(π) =

∑m−1
j=0 |j − π(j)|. [17] call

the resulting distance the �1 Rearrangement Distance.
We define the �∞ Rearrangement System in which we use the same set of op-

erators, with the cost being the maximum of the distances the individual elements
have been moved. Formally, let x and y be strings of length m. A rearrangement
under the �∞ operators is a permutation π : [0..m − 1] → [0..m − 1], where the
cost is cost(π) = maxj∈{0,...,m−1} |j − π(j)|. We call the resulting distance the
�∞ Rearrangement Distance. We prove:

Theorem 1. For T and P of sizes n and m respectively (m ≤ n), the �1 Re-
arrangement Distance can be approximated to a constant ε > 0 in time O(n).

Theorem 2. For T and P of sizes n and m respectively (m ≤ n) the �∞ Re-
arrangement Distance can be computed in time O(m(n − m + 1)). If all entries
of P are distinct then the �∞ Rearrangement Distance can be computed in time
O(n log m).
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Theorem 3. For T and P of sizes n and m respectively (m ≤ n), the �∞
Rearrangement Distance can be approximated to a factor of 2 in time O(n log m).

2 Approximating the �1 Rearrangement Distance

In this section we show how the �1 rearrangement distance can be approximated
in linear time for general strings.

2.1 Preliminaries

Stable Distributions. A distribution D over R is called p-stable, if there exists
p ≥ 0 such that for any m real numbers a1, . . . , am and i.i.d variables X1, . . . , Xm

with distribution D, the random variable
∑

j ajXj has the same distribution as
the variable (

∑
j |aj |p)1/pX , where X is a random variable with distribution

D.
It is known [20] that stable distributions exist for any p ∈ (0, 2]. In particular,

a Cauchy distribution (denoted DC), defined by the density function C(x) =
1
π

1
1+x2 , is 1-stable. Specifically, we use the following lemma.

Lemma 1. [Indyk] [21] Let X0, . . . , Xm−1 be random variables drawn from DC
distribution, and let X1, . . . , Xl be independent samples of X0, . . . , Xm−1, where
l = c/ε2 log 1/δ and c is a suitable constant, then the probability that

median(|
∑

ajxj,1|, |
∑

ajxj,2|, . . . , |
∑

ajxj,l|) ∈ [(1−ε)
∑

|aj |, (1+ε)
∑

|aj |]

is greater than 1 − δ.

Remark. In [21] it is shown that Lemma 1 can be applied even when a bounded
precision of O(log m) bits is used.

The �1 Pairing Lemma. The main difficulty in the case of general strings is
that repeating symbols have multiple choices for their desired destination. Let
x and y be strings of length m. Our goal is to pair the locations in x to destina-
tion locations in y, so that repeating symbols can be labelled in x and y to get
strings with the same m distinct letters (permutation strings). Such a labelling
can be viewed as a permutation of the indices of x. Clearly, if x contains dis-
tinct elements then only one labelling permutation can convert x to y. However,
there can be many labelling permutations if x contains multiple occurrences of
elements. Trying all labelling permutations π to choose the one that gives the
minimal distance between the permutation strings resulting from the labelling
according to π, is impractical. Fortunately, we can characterize a labelling per-
mutation of indices that gives the minimum �1-distance. This will be enough to
derive a polynomial algorithm for the �1-distance in the general strings case as
well.

Lemma 2. [Amir et al.] [17] Let x, y ∈ Σm be two strings such that d�1
(x, y) <

∞. Let πo be the permutation that for any a and k, moves the k-th a in x to the
location of the k-th a in y. Then, d�1

(x, y) = cost(πo).
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2.2 The Approximation Algorithm

By Lemma 2 in order to find the �1 distance of P and T (i) we need to compute∑m−1
j=0 |j −πi

o(j)|. By Lemma 1, it is enough to compute |
∑m−1

j=0 (j −πi
o(j)) ·xj,k |

for k = 1, . . . , l samples of X0, . . . , Xm−1 drown from Cauchy distribution, and
take the median value. In the sequel we explain how to compute |

∑m−1
j=0 (j −

πi
o(j)) · xj,k| for all text locations in time O(n).
Note that the above sum is the difference of the following two sums:

∑m−1
j=0 j ·

xj,k and
∑m−1

j=0 πi
o(j) · xj,k. The first sum can be easily be computed in O(m)

time, so we only have to explain how to compute
∑m−1

j=0 πi
o(j) · xj,k for all text

locations in O(n) time.
First note that by simple counting we can easily find all locations for which

the distance is ∞, i.e. the locations for which there is no way to convert the one
string to the another. Thus, we need only regard the substrings T (i) which are a
permutation of P . Consider an element a ∈ A, and let occa(x) be the number of
occurrences of a in x. For these substrings, occa(P ) = occa(T (i)) for all a ∈ P .
Consider a symbol a, and let ψa(P ) and ψa(T ) be the lists of locations of a in
P and T , respectively. Note that these two lists need not be of the same length.
Similarly, let ψa(T (i)) be the list of locations of a in T (i). Then, for any T (i)

(which is a permutation of P ):

m−1∑

j=0

πi
o(j) · xj,k =

∑

a∈P

occa(P )−1∑

j=0

ψa(T (i))[j] · xj,k (1)

We now wish to express the above sum using ψa(T ) instead of the individual
ψa(T (i))’s. Note that all the a’s referred to in ψa(T (i)) are also referred to in
ψa(T ). However, ψa(T ) gives the locations with regards to the beginning of T ,
whereas ψa(T (i)) gives the locations with regards to the beginning of T (i) - which
is i positions ahead.

For each i and a, let matcha(i) be the index of the smallest entry in ψa(T )
with value at least i. Then, matcha(i) is the first entry in ψa(T ) also referenced
by ψa(T (i)). Then, for any a, i and j ≤ occa(P ):

ψa(T (i))[j] = ψa(T )[matcha(i) + j] − i.

Thus, (1) can now be rewritten as:

m−1∑

j=0

πi
o(j) · xj,k =

∑

a∈P

occa(P )−1∑

j=0

(ψa(T )[matcha(i) + j] − i) · xj,k (2)

Finally, (2) can be rewritten as:

m−1∑

j=0

πi
o(j)·xj,k =

∑

a∈P

occa(P )−1∑

j=0

ψa(T )[matcha(i) + j]·xj,k−i·
∑

a∈P

occa(P )−1∑

j=0

xj,k

(3)
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Using (3) we can compute separately
∑

a∈P

∑occa(P )−1
j=0 xj,k (in O(m) time)

and
∑

a∈P

occa(P )−1∑

j=0

ψa(T )[matcha(i) + j] · xj,k

for all i, then in O(n) time get the �1 distance for every location, and choose the
minimum value. It remains to explain how to compute:

∑

a∈P

occa(P )−1∑

j=0

ψa(T )[matcha(i) + j] · xj,k

for all i in time O(n). The important observation here is that the values xj,k are
all random values drown from Cauchy distribution, so it does not matter which
of the values is currently multiplied as long as we have occa(P ) different sample
values for each text location. Thus, the above sum can be simply computed in
O(occa(P )) time for the first location in ψa(T ), and in O(1) for every other
location using a sliding window of size occa(P ). Doing this for every a ∈ A and
summing the results gives the requested sum. We have proved Theorem 1.

3 The �∞ Rearrangement Distance

3.1 Exact �∞ Rearrangement Distance

Let x and y be strings of length m. Clearly, if x contains distinct elements then
only one permutation can convert x to y. However, there can be many such per-
mutations if x contains multiple elements. Computing the cost for each of them
in order to find the distance between x and y might be too expensive. Fortu-
nately, similar to the �1 case, we can characterize a minimal cost permutation
converting x to y.

Lemma 3. Let x, y ∈ Am be two strings such that d�∞(x, y) < ∞. Let πo be
the permutation that for all a ∈ A and k, moves the k-th a in x to the location
of the k-th a in y. Then,

d�∞(x, y) = cost(πo).

Proof. For a permutation π, and i < j such that x[i] = x[j], say that π reverses
i and j if π(j) > π(i). Note that πo is characterized by having no reversals.
Now we show that it has the least cost. Let τ be a permutation converting x
to y of minimal cost that has the minimal number of reversals. If there are no
reversals in τ , then there is nothing to prove, since it is exactly the permutation
πo. Otherwise, suppose τ reverses j and k (j < k). Let τ ′ be the permutation
which is identical to τ , except that τ ′(j) = τ(k) and τ ′(k) = τ(j). Then, clearly
τ ′ also converts x to y. We show that cost(τ ′) ≤ cost(τ). Consider two cases:
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Case 1: τ(j) ≥ k ≥ τ(k) ≥ j or τ(k) ≤ j ≤ τ(j) ≤ k. Consider the case
τ(j) ≥ k ≥ τ(k) ≥ j. We get:
cost(τ) − cost(τ ′) =
= max{|τ(j) − j|, |τ(k) − k|} − max{|τ ′(j) − j|, |τ ′(k) − k|}
= max{|τ(j) − j|, |τ(k) − k|} − max{|τ(k) − j|, |τ(j) − k|}
= (τ(j) − j) − max{|τ(k) − j|, (τ(j) − k)} ≥ 0.
The argument for τ(k) ≤ j ≤ τ(j) ≤ k is symmetrical.

Case 2: j < τ(k) < τ(j) < k. Then,
cost(τ) − cost(τ ′) =
= max{|τ(j) − j|, |τ(k) − k|} − max{|τ ′(j) − j|, |τ ′(k) − k|}
= max{|τ(j) − j|, |τ(k) − k|} − max{|τ(k) − j|, |τ(j) − k|} > 0.
Since, |τ(j) − j| > |τ(k) − j| and |τ(k) − k| > |τ(j) − k|.

Thus, the cost of τ ′ is at most that of τ , and there is one less reversal in τ ′, in
contradiction.

Thus, in order to compute the �∞ distance of x and y, we create for each
symbol a two lists, ψa(x) and ψa(y), the first being the list of locations of a in
x, and the other - the locations of a in y. Both lists are sorted. These lists can
be created in linear time. Clearly, if there exists an a for which the lists are of
different lengths then d�∞(x, y) = ∞. Otherwise, for each a, compute the differ-
ences between the corresponding elements in the lists, and take the maximum
over all a’s. This provides a linear time algorithm for strings of identical lengths,
and an O(m(n − m + 1)) algorithm for the general case. This proves the first
part of Theorem 2.

Patterns with Distinct Letters. We now show that if all entries of P are distinct,
then the problem can be solved in O(n log m). In this case, w.l.o.g. we may as-
sume that the pattern is simply the string 0, 1, . . . , m−1. The basic idea is first to
compute the distance for the first text location, as described above, while keeping
information in appropriate data structures (to be explained). Then inductively
compute the distance for the next text location, based on the information from
previous location, making proper adjustments. Consider a text location i such
that d�∞(P, T (i)) < ∞. Then, since all entries of P are distinct, for each j ∈ P

there is exactly one matching entry in T (i). As we move from one text location
to the next, the matching symbols all move one location to the left – relative
to the pattern, except for the leftmost — which falls out; and the rightmost —
which is added. For all symbols that are further to the right in the text than in
the pattern, this movement decreases their difference by 1. Thus, their relative
order is unchanged, and can be kept in a priority queue R-PriorityQueue (by
their original difference) so that we can keep track of their maximum. For all
symbols that are further to the left in the text than in the pattern, this move-
ment increases their difference by 1. Again, their relative order is unchanged and
can be kept in a priority queue L-PriorityQueue (by their original difference) so
that we can keep track of their maximum. Thus, given the distance at location
i, in order to compute the distance at location i + 1, we only need to know
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the maximum difference of each type and compare to the difference of the new
symbol (the new symbol and the one removed are easily handled).

To this end we keep track for each symbol j if it is currently to the left or
to the right (this is stored in the array location[·]), and the current position of
the maximum in each type (stored in L-PriorityQueue and R-PriorityQueue).
In addition, we store for each symbol the point at which it moves from be-
ing at the right to being at the left (this is stored in the array Trans-point[·]).
Since P is simply the sequence 0, 1, . . . , m − 1, this Trans-point[·] can be easily
computed. The important observation here is that when a symbol is added to
L-PriorityQueue (or R-PriorityQueue) we don’t need to re-compute all differ-
ences (remember that their actual priority is not valid, only their relative order
is valid) in order to find its place in the priority queue. We only re-compute the
addition path of the new element. If the priority queues are kept as binary heaps,
this takes at most O(log m) re-computations of differences each in time O(1). If
a priority queue is empty, we define its maximum function to return 0. In this
way we are able to compute the new maximum for each location in O(log m)
steps per location, for a total of O(n log m). A full description of the algorithm
is provided in Fig. 1. Note that each symbol in the text participates in line 16
at most once, so the amortized cost of this line is O(1). Also, note that the main
part of the algorithm (lines 1–16) computes the distance correctly only for those
locations which have bounded distance. However, by simple counting it is easy
to eliminate (in O(n) steps), all the locations of infinite distance. Thus, in line
17 we find the minimum among those which have bounded distance. We have
proved the second part of Theorem 2.

3.2 Approximating the �∞ Distance

In this section we describe how to efficiently approximate the �∞ distance up
to a factor of 1 + ε in time O(1

εn log2 m). First we show that it is enough to
compute �p for p ≥ log m/ε in order to approximate �∞up to a factor of 1 + ε.
Then, we explain how to compute the �p distance in time O(pn log m) for even
p. Choosing an even p ≥ log m/ε gives Theorem 3.

Lemma 4. [Indyk et al.] [22] For every p ≥ log m/ε, u, v ∈ R
m,

‖u − v‖∞ ≤ ‖u − v‖p ≤ (1 + ε)‖u − v‖∞

By Lemma 4 we need only explain how to compute the �p distance for even
p in time O(pn log m). For that we use the observation that the �2 algorithm
of [17] can be generalized for any even p, using p convolutions instead of only
one. This algorithm is based on the �2 pairing lemma (similar to Lemma 2)
proved in [17]. Therefore, we need to show that the same pairing lemma is also
correct for general p. This is given in Lemma 5. We have therefore explained the
O(pn log m) algorithm.

Lemma 5. Let x, y ∈ Am be two strings such that d�p
(x, y) < ∞. Let πo be the

permutation that for all a and k, moves the k-th a in x to the location of the
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Computing the �∞ Distance (all variables initialized to 0)
1 For j = 0 to m − 1 do
2 if T [j] ≤ j then location[T [j]] ← Left
3 else location[T [j]] ← Right
4 set Trans-point[T [j]] ← j − T [j]
5 For j = 0 to m − 1 do
6 add T [j] to the list Trans-symbols[Trans-point[T [j]]]
7 R-PriorityQueue ← |{j|location[j] = Right}|
8 L-PriorityQueue ← |{j|location[j] = Left}|
9 d[0] ← maxm−1

j=0 |j − T [j]|
10 For i = 1 to n − m do
11 set t ← T [i + m]
12 if location[t] = Left then Add(L-PriorityQueue,t)
13 else remove t from Trans-symbols[Trans-point[t]]
14 add t to the list Trans-symbols[i + m − t]

and set Trans-point[t] ← i + m − t
15 d[i] ← max{max(L-PriorityQueue), max(R-PriorityQueue)}
16 for each t′ ∈ Trans-symbols[i] do Add(L-PriorityQueue,location[t′])

17 dmin ← min{d[i] | T (i) is a permutation of [0..m − 1]}
18 return dmin

Fig. 1. Computing the �∞ Rearrangement Distance for P = (0, 1, . . . , m − 1)

k-th a in y. Then,
d�p

(x, y) = cost(πo).

I.e. πo is a permutation of the least cost.

Proof. Recall that πo is characterized by having no reversals. Now we show that
it has the least cost. Let τ be a permutation converting x to y of minimal cost
that has the minimal number of reversals. If there are no reversals in τ , then
there is nothing to prove, since it is exactly the permutation πo. Otherwise,
suppose τ reverses j and k (j < k). Let τ ′ be the permutation which is identical
to τ , except that τ ′(j) = τ(k) and τ ′(k) = τ(j). Then, clearly τ ′ also converts x
to y. We show that cost(τ ′) ≤ cost(τ). Consider two cases:

Case 1: τ(j) ≥ k > τ(k) ≥ j or τ(k) ≤ j < τ(j) ≤ k. Consider the case
τ(j) ≥ k > τ(k) ≥ j. We get:
cost(τ) − cost(τ ′) =
= |τ(j) − j|p + |τ(k) − k|p − |τ ′(j) − j|p − |τ ′(k) − k|p
= |τ(j) − j|p + |τ(k) − k|p − |τ(k) − j|p − |τ(j) − k|p
= |(τ(j)−k)+(k−τ(k))+(τ(k)− j)|p + |τ(k)−k|p −|τ(k)− j|p −|τ(j)−k|p
≥ |τ(j)−k|p + |k− τ(k)|p + |τ(k)− j|p + |τ(k)−k|p −|τ(k)− j|p −|τ(j)−k|p
= 2|τ(k) − k|p ≥ 0.
The argument for τ(k) ≤ j < τ(j) ≤ k is symmetrical.
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Case 2: j < τ(k) < τ(j) < k. Then,
cost(τ) − cost(τ ′) =
= |τ(j) − j|p + |τ(k) − k|p − |τ ′(j) − j|p − |τ ′(k) − k|p
= |τ(j) − j|p + |τ(k) − k|p − |τ(k) − j|p − |τ(j) − k|p
= |(τ(j) − τ(k)) + (τ(k) − j)|p + |(k − τ(j)) + (τ(j) − τ(k))|p − |τ(k) − j|p −
|τ(j) − k|p
≥ |τ(j)−τ(k)|p+|τ(k)−j|p+|k−τ(j)|p+|τ(j)−τ(k)|p−|τ(k)−j|p−|τ(j)−k|p
= 2|τ(j) − τ(k)|p > 0.

Thus, the cost of τ ′ is at most that of τ , and there is one less reversal in τ ′, in
contradiction.
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Abstract. The Longest Common Subsequence (LCS) is a well studied
problem, having a wide range of implementations. Its motivation is in
comparing strings. It has long been of interest to devise a similar measure
for comparing higher dimensional objects, and more complex structures.
In this paper we give, what is to our knowledge, the first inherently
multi-dimensional definition of LCS. We discuss the Longest Common
Substructure of two matrices and the Longest Common Subtree problem
for multiple trees including a constrained version. Both problems can-
not be solved by a natural extension of the original LCS solution. We
investigate the tractability of the above problems. For the first we prove
NP-Completeness. For the latter NP-hardness holds for two general
unordered trees and for k trees in the constrained LCS.

1 Introduction

The Longest Common Subsequence problem, whose first famous dynamic pro-
gramming solution appeared in 1974 [19], is one of the classical problems in Com-
puter Science. The widely known string version is given two strings of length n,
find the length of the maximal subsequence common to both strings. For exam-
ple, for A = abcddabef and B = efbadeaab, LCS(A, B) is 4, where a possible
such subsequence is adab.

The LCS problem, has been well studied. For a survey, see [3]. The main
motivation for the problem is comparison of different strings. An immediate
example from computational biology is finding the commonality of two DNA
molecules. Most previous works deals with the one dimensional (string) version
of the problem. However, there has been increasing motivation for considering
generalizations of the LCS to higher dimensions (e.g. matrices) and different
data structures (e.g. trees). For example, the secondary and tertiary structure of
proteins and RNA play an important role in their functionality [5], thus it has
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been an interesting challenge to devise an inherently multi-dimensional method
of comparing multidimensional objects, as the LCS compares strings.

The first task we tackle in this paper is to give a natural definition generalizing
the LCS. All generalizations until now are, essentially, linearizations [2]. Edit
distance, a closely related problem, has also been generalized, and again the
errors are within a single dimension [12], [1]. To our knowledge, our definition is
the first inherently multi-dimensional generalization in the literature. It elegantly
and naturally generalizes the string definition.

Unfortunately, it turns out that the LCS problem between two matrices is
NP-hard. LCS applied to trees has been previously defined for two trees, via
the tree edit distance. We consider the problem for multiple trees, in the case of
ordered and unordered trees. We also define a constrained version of the trees
LCS (Con-LCS) applied to the above cases. Besides creating a generalized frame-
work for the LCS problem applied to higher dimensions we aim at discovering
the tractability of these problems, that is, when does the problem become un-
solvable in polynomial time. The tractability results of all the above problems
appear in the table of Figure 1, where LCStree refers to Largest Common Sub-
tree and CON-LCStree stands for Constrained LCStree. Known previous results
appear in the table with the appropriate citation.

Matrix Unordered Unordered Ordered Ordered
LCStree Con-LCStree LCStree Con-LCStree

2 NPC NPC P [?] P [6,10,16] P [21]

k > 2 NPC NPC NPC O(kn2k) O(kn2k + kk/2n2k−1)

Fig. 1. Tractability results

This paper is organized as follows: Section 2 pinpoints the essence of the
string LCS problem, enabling us to generalize it to more complex structures and
higher dimensions. The definition of two dimensional LCS as well as the NP-
hardness result are shown in Section 3. The generalization to trees is defined in
Section 4. Section 5 proves NP-hardness of unordered two trees and for k trees
of the constrained LCS. Section 6 provides a dynamic programming algorithm
for polynomially computing the LCS of two ordered trees and shows that the
problem is solvable in O(kn2k) for k trees, which is polynomial for a constant
number of trees.

2 Preliminaries

The known solutions for LCS use dynamic programming algorithms, in which
they compute at each step the LCS(A[1, i], B[1, j]) till they reach LCS(A[1, n],
B[1, n]). The following observations are trivial, yet important to understand the
main characteristic of the problems, which will assist us defining generalized LCS
problems consistently to the original LCS ‘spirit’.
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Observation 1. A string is a collection of objects (characters) with total prece-
dence order between them, for every two distinct objects, one precedes another.

Observation 2. The LCS problem is ordered on a line. An LCS solution,
matching A[i] to B[j] can match A[i′], where i′ > i, only to a B[j′] where j′ > j,
and vice versa.

Lemma 1. The above characteristics of the LCS problem allows its optimal
solution to consider at every step increasing prefixes of the input strings.

Proof. The dynamic programming solution has a single possible direction of
enlarging the substrings to which it computes their LCS, since all characters are
ordered in precedence order. Therefore, computing LCS(A[1, i], B[1, j]) depends
merely on the LCS of prefixes of A and B shorter in one or zero symbols. ��

Observation 3. The LCS of strings A, B is the reverse of the LCS of Ar, Br,
where Sr is the reversed string of S.

The above observations suggest a more combinatorial definition of the LCS
problem, one that naturally generalizes to higher dimensions. Below is a com-
binatorial definition of the string LCS problem that supports all above
observations.

Definition 1. The String Longest Common Subsequence (LCS) Problem:
Input: Two strings A, B of length n over alphabet Σ.
Output: The maximum domain size of a one-to-one function f : {1, ..., n} →

{1, ..., n}, where A[i] = B[f(i)], for every i in the domain, and where,
for i, j ∈ Dom(f), i < j iff f(i) < f(j).

The advantage of this definition is that it abstracts the LCS into an order pre-
serving matching. A similar order preserving matching that support the above
observations is the natural generalization. However, when dealing with partially
ordered structures, the dynamic programming method of computing the neces-
sary calculations on prefixes of increasing size is meaningless, as a prefix can
not be defined. A more general approach is used in our dynamic programming
solutions of the tree LCS problems.

3 Two Dimensional LCS

Extending the Longest Common Subsequence problem to a two dimensional
problem, the input should be two symbols matrices, in which we seek identical
symbols, preserving their order in the matrix. This will not necessarily result in
an array, but rather the symbols common to both matrices, that preserve their
order in both matrices. For this reason we name the problem 2 Dimensional
Longest Common Substructure (2D LCS). As far as we know, no inherently two
dimensional version of LCS was previously defined.

We define the problem in a way that Observations 2 and 3 are applicable in
the two dimensional problem as well.
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Definition 2. The 2 Dimensional Longest Common Substructure (2D LCS):
Input: Two matrices A, B of size n × n each, over alphabet Σ.
Output: The maximum domain size of a one-to-one function f : {1, ..., n}2 →

{1, ..., n}2, where A[i, j] = B[f(i, j)], for every (i, j) in Dom(f),
and where, for (ik, jk), (i′k, j′k) ∈ Dom(f) and for f(ik, jk) = (iig, jjg)
and f(i′k, j′k) = (ii′g, jj′g), the following hold:
1. ik < i′k iff iig < ii′g.
2. ik = i′k iff iig = ii′g.
3. jk < j′k iff jjg < jj′g.
4. jk = j′k iff jjg = jj′g.

An example for two matrices can be seen in Figure 2. The 2D LCS of these
matrices is 4 and can be obtained by the boldface letters.

A A

Matrix A Matrix B

A

D B C

D

C C

D

DB

A

B

A

C

C

A

Fig. 2. An example of two matrices

The importance of the combinatorial definition is that it can be easily ex-
tended to higher dimensions, in which the matching symbols, required to be
identical, preserve the order relation in space, meaning that for a d-dimensional
structure other 2d constraints should be added, two for every axis. We get the
following general definition:

Definition 3. The d Dimensional Longest Common Substructure (dD LCS):
Input: Two arrays A, B of size nd each, over alphabet Σ
Output: The maximum domain size of a one-to-one function f : {1, ..., n}d →

{1, ..., n}d, where A[i1, ..., id] = B[f(i1, ..., id)], for every (i1, ..., id)
in Dom(f), and where, for (i1, ..., id), (i′1, ..., i

′
d) ∈ Dom(f) and for

f(i1, ..., id) = (ii1, ..., iid) f(i1, ..., id) = (ii1, ..., iid) and f(i′1, ..., i
′
d) =

(ii′1, ..., ii
′
d), the following hold for every 1 ≤ j ≤ d:

1. ij < i′j iff iij < ii′j.
2. ij = i′j iff iij = ii′j.

The requirement for order preservation between every two selected entries, though
necessary for the LCS generalization, is very strong. As will be seen, this causes
the high complexity solution to the 2D LCS problem.
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3.1 2D LCS Is NP-Hard

We claim the problem is not polynomially computable. To this aim we define
the 2D LCS decision version:

Definition 4. The 2 Dimensional Common Substructure (2D CS):
Input: Two matrices A, B of size n2 each, and a constant L.
Output: Does there exists a 2D LCS of A, B of size L.

Theorem 1. The 2D CS problem is NP-hard.

We prove the hardness of the problem by a reduction from Clique.

Lemma 2. Clique ∝p
m 2D CS.

Proof. Given a graph G = (V, E) with n vertices and a constant K, We construct
two matrices. Matrix A, of size K × K, contains 1 in all entries except those on
the main diagonal, where 2 is placed. Matrix B is the adjacency matrix of G
with a slight change. B is of size n × n, where B[i, j] ∈ {0, 1, 2} is defined as:

A[i, j] =
{

2 i = j
1 otherwise

B[i, j] =

⎧
⎨

⎩

1 (vi, vj) ∈ E
2 i = j
0 otherwise

Finally, take L = K2.
Obviously the construction is done in polynomial time in the size of G, as L

must be bounded by n. For an example of the construction see Fig. 3.

2 1 1

1 2 1

1 1 2

1 4

3

2

2 1 0 0

1 2 1 1

0 1 2 1

0 1 1 2

Matrix A Graph G Matrix B

Fig. 3. Matrices A, B constructed for graph G and K = 3

Lemma 3. G contains a clique of size ≥ K iff there exists a 2 dimensional
common substructure of size ≥ L between A and B.

Proof. (⇒) Suppose G contains a clique of size K. Let vi1 , ..., viK be the nodes
participating in the clique, listed in increasing indices order. Hence, B[is, it] = 1
for all 1 ≤ s, t ≤ K, s 
= t. We get that matrix A, the whole of it can be matched,
in the common substructure sense, to B[i, j] entries, where i, j ∈ {i1, .., iK} in
the following order: The first row of A, will be matched to the i1, ..., iK entries
of row i1 in B. There are K such entries, so the number of the matched entries
is equal. Note that B[i1, i1] = 2 as it is located on the main diagonal, thus
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B[i1, i1] = A[1, 1]. The rest of the entries B[i1, ij], ij ∈ {i2, ..., iK} contain 1,
just like the rest of A[1, j], 1 < j ≤ K, so the symbols matched are identical. In
the same way, row h of A is matched to the i1, ..., iK entries of row ih in B. Here
again all selected symbols, in both matrices are 1 except the hth that is 2. All
in all we get that there are L = K2 identical symbols in the different matrices
that can be matched.

We show that every pair of such symbols from A and its corresponding pair
from B preserve the order relation in the plane. Let A[i, j], A[i′, j′] be two sym-
bols matched to B[ii, jj], B[ii′, jj′] correspondingly. Due to the way the one-
to-one matching function was chosen we have that B[ii, jj] = B[ii, ij] and
B[ii′, jj′] = B[ii′ , ij′ ].

Consider all possible cases:
1. i = i′, so we have ii = ii = ii′.
2. i > i′, implies ii = ii > ii′ = ii′ since every ij < ij+1.
3. j = j′, again jj = ij = ij′ = jj′.
4. j > j′, implies jj = ij > ij′ = jj′ since every ij < ij+1.

(⇐) The rest of the proof is similar to the previous case, and will appear in
the journal version.

4 Largest Common Subtree (LCStree)

The problem of comparing trees occurs in many areas such as computer vision,
compiler optimization, natural language processing and computational biology.
In the latter field, for example, it is possible to represent the RNA secondary
structure as a rooted ordered tree [15].

A comparison between two given trees T1, T2, can be defined in diverse ways,
searching isomorphism between two trees, looking for homeomorphism, seeking a
a maximum agreement subtree problem and more. Another possible comparison
between objects is, of course, the edit distance. In a recent paper [6], Demaine
et. al. improve Klein [10] and Shasha and Zhang [16] and give an O(n3) time
algorithm for tree edit distance, for two n sized rooted ordered trees.

We define the problem in a way consistent with the String Longest Common
Subsequence, that is all parts of the main structure are labelled and each of them
can be deleted to give a common substructure. As a consequence, The Largest
Common Subtree Problem should require the matching of inner nodes as well
as the leaves, and should enable pruning nodes of the trees. Where pruning a
node v implies all children of v become the children of the parent node of v. Our
general definition easily adapts to trees.

Definition 5. The Largest Common Subforest Problem (LCStree):
Input: Given two node-labelled trees T1 = (V1, E1), T2 = (V2, E2), where the labels are

from alphabet Σ.
Output: The maximum domain size of a one-to-one function f : V1 → V2, where

the following hold:
1. Label of node v equals the label of node f(v), for every v ∈ Dom(f).
2. For v, w ∈ Dom(f), v is an ancestor of w iff f(v) is an ancestor of f(w).
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Observe that in case T1, T2 are degenerated trees, in the form of chains, the
definition is reduced to the traditional strings LCS (Definition 1). This defini-
tion applies to unordered trees, for ordered trees, where order among siblings is
significant, a third requirement should be added to the LCStree definition:

for v, w ∈ Dom(f), v is to the right of w iff f(v) is to the right of f(w).
Where a node v is to the right of node w if v is a right sibling of w, or that an
ancestor of v is a right sibling of an ancestor of w.

It is important to note that the LCStree is not necessarily a tree, but could be
a forest. The above definition can be viewed as an extension of the Tree Inclusion
problem [18,9,14] where we are given a pattern tree P and a text tree T both
with labels on the nodes and we seek the smallest subtree of T that includes P .
A tree is included in another tree if it can be obtained from the larger one by
deleting nodes and in case of unordered trees, by also permuting siblings. The
tree inclusion problem on unordered trees is NP-hard [9]. For ordered trees it
is polynomially solved [9], [14] in O(|P | · |T |).

It is a well known fact that the LCS problem can be looked at as a special case
of the edit distance transforming one string to another by operations of substi-
tution, deletion and insertion. Suppose the substitution operation is assigned a
high cost, such that it will never be profitable to use it, the edit distance problem
is then equivalent to finding the LCS of the strings. It can be easily seen that
this notion can be applied to generalized LCS and Edit Distance problems, in
case they are consistently defined. As the edit distance between two trees is a
well studied problem [4], in the following sections we will use some edit distance
algorithms for trees to solve equivalent LCStree questions.

4.1 Constrained-LCStree

An interesting version of the edit distance problem posed by Zhang [20,4] is
the constrained edit distance, in which a natural constraint is added to the
known tree edit distance, namely that disjoint subtrees must be mapped to
disjoint subtrees. The constrained edit distance is motivated from classification
tree comparison. We similarly define the constrained LCStree:

Definition 6. The Constrained Largest Common Subforest Problem(Con-
LCStree):
Input: Given two node-labelled trees T1 = (V1, E1), T2 = (V2, E2), where the labels

are from alphabet Σ.
Output: The maximum domain size of a one-to-one function f : V1 → V2, where

the following hold:
1. Label of node v equals the label of node f(v), for every v ∈ Dom(f),
2. For v, w ∈ Dom(f), v is an ancestor of w iff f(v) is an ancestor of f(w).
3. For v, w ∈ Dom(f), v and w are siblings iff f(v) and f(w) are siblings.

When two unordered trees T1, T2 are concerned, Zhang [21,4] suggested an algo-
rithm solving the constrained trees edit distance consuming O(|T1||T2|· (deg(T1)+
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deg(T2))log(deg(T1)+deg(T2))) time. Slight modifications of his algorithm make
it applicable to Constrained-LCStree of two unordered trees.

Applying the Constrained Edit Distance to ordered trees was also done by
Zhang [20]. All rooted subtrees were considered as relevant subproblems. Com-
paring the LCStree of two subtrees T1[t1] with T2[t2], t1 and t2 can be compared
and then their children should be matched, in way that the order among the
children would be adhered. To this aim Zhang suggested reducing the problem
to string edit distance. In addition, t1 can be matched to every child of t2 and
vice versa. For the Constrained-LCStree for two ordered trees, we can use his
algorithm running in time O(|T1||T2|). As a consequence, we discuss the problem
of Constrained-LCStree merely when applied to multiple trees.

4.2 LCStree of 3 and More Trees (LCSktrees)

Having defined the LCStree problem for two trees, it is only natural to con-
sider the LCStree problem of three and more trees. The definition automatically
derives from the definition of the problem between two trees. We formally de-
fine here the most general problem, though for ordered trees or for constrained
LCStree the modifications are obvious:

Definition 7. The Largest Common k Subforests Problem (LCSktree):
Input: Given k node-labelled trees Ti = (Vi, Ei), where the labels

are from alphabet Σ.
Output: The maximum size of the intersection of the domains of k − 1 one-to-one

functions fi : V1 → Vi+1, 1 ≤ i < k, where the following holds ∀i 1 ≤ i < k:
1. Label of node v equals the label of node fi(v), for every v ∈ Dom(fi).
2. For v, w ∈ Dom(fi), v is an ancestor of w iff fi(v) is an ancestor of fi(w).

To our knowledge, this problem has not been considered hitherto even for ordered
trees, where order among siblings is fixed. In the following subsections we prove
NP-Completeness even for the Constrained LCS of k unordered trees.

5 Unordered Trees

Our LCStree definition can be viewed as an extension of the Tree Inclusion
problem [18,9,14] where we are given a pattern tree P and a text tree T both
with labels on the nodes and we seek the smallest subtree of T that includes P .
The tree inclusion problem on unordered trees is NP-hard [9]. We thus claim
the LCStree problem is not polynomially computable and prove its hardness by
a reduction from the tree inclusion problem.

Lemma 4. Tree Inclusion problem ≤p
T CStree.

Given two trees T and P , let T1 = T , T2 = P and L = |P |. It follows that T
includes P iff there exist common subtrees of total size ≥ L between T1 and T2.

Theorem 2. The LCStree problem applied to two unordered trees is NP−hard.
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5.1 Constrained LCStree for 3 and More Unordered Trees

Though the two trees version of the problem is polynomial, for three and more
trees we claim as follows, the proof will appear in the full version of the paper.

Theorem 3. The Con − LCSktree problem is a NP hard problem.

6 Ordered Trees

The edit distance problem for ordered trees, as defined by Demain et. al. [6],
relates to our ordered case definition as the string edit distance relates to the
string LCS. Demain et. al. [6] suggest a dynamic programming consuming O(n3)
time. Using their algorithm we get:

Theorem 4. The LCStree problem for Ordered Trees is solved in O(n3).

6.1 LCSktree for Ordered Trees

To our knowledge, there is no algorithm for tree edit distance of k > 2 ordered
trees, therefore we suggest a new algorithm for the LCSktree for ordered trees,
by expanding the Shasha and Zhang [16] algorithm, solving the tree edit distance
problem. The algorithm now consumes O(kn2k) time. The modification of the
Shasha-Zhang algorithm to the LCStree case, will be described in the journal
version.

Theorem 5. The LCSktree problem for k Ordered Trees can be polynomially
solved for a constant k trees.

6.2 Constrained LCSKtree for Ordered Trees (Con-LCSktree)

In contrast to general unordered trees, where we proved the Con-LCSktree to
be NP hard, the problem for k ordered trees is is polynomial for a constant
number of trees. The instance of the problem is T = {T1, ..., Tk} labelled trees
where order among siblings is significant. We give a solution for Con-LCStree
for k ordered trees consuming O(knk + kk/2nk−1) time. For the case of k = 2
we get a O(n2) solution for the LCStree problem, just as was attained by the
Zhang [21] for constrained edit distance between two ordered trees.

Here again the relevant subproblems are all rooted subtrees of the k trees,
therefore the dynamic programming table we fill is of size O(nk).

Solving the Constrained LCStree problem for multiple trees can be done simi-
larly to the case of two trees, where we have two cases: First if all roots of the cur-
rent trees match, we need to match between their children. On the other hand, if we
choose to discard a root we need to match one of its children with the other roots.

However this generalization is not straightforward, for the former case, we need
a k-matching algorithm, while the 3Matching problem is NP-Complete. However,
we suggest to reduce it to a non crossing matching problem. As we deal with k
strings we must consider a k-matching, matching of k dimensions, and in order to
preserve the order between siblings, it must be a noncrossing matching.
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Definition 8. The Maximum k Dimensional Weighted NonCrossing Matching
Problem (kMWNM):
Input: A complete weighted k-partite graph Gn1,...,nk

= (V1, ..., Vk, E).
Output: The maximum weighted matching of Gn1,...,nk

, where matching
k vertices x1, ..., xk implies, all vertices proceeding xi can be matched
only to those proceeding xj, j 
= i and all those succeeding xi

to vertices succeeding xj merely.

For the kMWNM problem we will present an algorithm consuming O(knk) in
the journal version.

For the second case of the problem, we need to consider 0 < k′ < k out of k
trees, whose roots are matched with themselves. The LCSktree can be obtained
by comparing a subtree from each of the k − k′ ‘unselected’ trees with the k′

complete trees. As each of the k − k′ trees is represented by a single subtree, we
have to consider the cartesian product of these subtrees.

Let the subtree of tree Ti rooted at ti has ni children. Suppose k′ trees whose
roots are compared were selected and renamed ti1 , ..., tik′ and the other k − k′

trees renamed tj1 , ..., tjk−k
, will contribute a child representing each txl

jl
. We get

following lemma:

Lemma 5. Con − LCStree(t1, . . . , tk) =

max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Equal(t1, ..., tk) + kMWNM({t11, ..., t
n1
1 }, . . . {t1k, ..., tnk

k }),
maxi1,xl,1≤l≤nl

{Con − LCStree(ti1 , t
x1
j1

, ..., t
xk−1
jk−1

)},

maxi1,i2,xl,1≤l≤nl
{Con − LCStree(ti1 , ti2 , t

x1
j1

, ..., t
xk−2
jk−2

)},
...

maxif ,1≤f≤k/2,xl,1≤l≤nl
{Con − LCStree(ti1 , ..., tik/2 , t

x1
j1

..., t
xk−k/2
jk−k/2

)}

Theorem 6. The Con-LCSktrees for ordered trees is polynomially solvable for
a constant number of trees.

Proof. The dynamic programming table will be of size nk, where every entry
[t1, ..., tk] refers to the Con-LCSktree value of subtrees originating in the different
k trees. Every axis i, stands for the rooted subtrees of Ti and is filled according
to increasing size of the subtrees.

Filling entry [t1, ..., tk] we must consider all options of selecting k′ out of k
trees which we match by their roots. For the case of k′ = k , we use the O(knk)
solution for the noncrossing matching, where n is the number of vertices in each
of the vertices lists of the matching. However, each of the matching computa-
tion is done on a k-partite graph induced by the direct children of the current
subtree root. Hence, all matching computations consume: O(

∑n
t1=1 · · ·

∑n
tk=1 k ·

dc(t1)dc(t2) · · · dc(tk)) which by the Observation 4 equals (knk).

Observation 4. Suppose t is a node from T of size n, and dc(t) is the number
of the direct children of t,

∑n
t=1 dc(t) = n − 1.

For k′ 
= k we need to choose the best subtree representative from each of the
k − k′ ‘unselected’ trees, meaning

∏k
i=k′+1 dc(ti) . Again, in the worst case,
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for k′ = 1 we have a product of k − 1 direct children of the current roots,
summing this product over all entries computed we get O(nk−1). However, this
does not terminate the cost as we have k − 1 options to select k′, therefore
O(kk/2) options of selected trees, aligned by their roots. Consequently, we get
O(kk/2nk−1) maximized values for a single entry. All in all, the algorithm re-
quires, O(knk + kk/2nk−1) time.

7 Conclusions and Open Problems

The main contribution of the paper is generalizing the concept of the traditional
Longest common Subsequence. In this paper we introduced two new problems
derived from the traditional Longest Common Subsequence. We have proved the
problem applied to matrices or to 3 general labelled trees or k for the constrained
version, is NP hard, whereas concerning k ordered trees it can be polynomial
for constant k. We have also generalized a noncrossing matching to k dimensions
and used it as an accessory to the constrained LCSktree solution. Consequently
to our new definitions, LCS questions regarding other non trivial structures may
be considered and their tractability explored.
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Abstract. In this paper, we propose a novel approach to focused crawl-
ing that exploits genre and content-related information present in Web
pages to guide the crawling process. The effectiveness, efficiency and
scalability of this approach are demonstrated by a set of experiments
involving the crawling of pages related to syllabi (genre) of computer
science courses (content). The results of these experiments show that
focused crawlers constructed according to our approach achieve levels
of F1 superior to 92% (an average gain of 178% over traditional focused
crawlers), requiring the analysis of no more than 60% of the visited pages
in order to find 90% of the relevant pages (an average gain of 82% over
traditional focused crawlers).

Keywords: Web crawling, Focused crawling, SVM classifiers.

1 Introduction

Focused crawlers or topical crawlers [2,7,9,10,13,15] are special purpose crawlers
that serve to generate smaller and more restricted collections of Web pages. They
have as their main goal to crawl pages that are, in the best possible way, relevant
to a specific topic or user interest. Focused crawlers are important for a great
variety of applications, such as digital libraries [14], competitive intelligence [11],
and large Web directories [8], to name a few. Additionally, when compared with
traditional crawlers used by general purpose search engines, they reduce the use
of resources and scale, since they do not need to cover the entire Web.

The challenge of identifying specific and relevant sub-spaces of the Web, ac-
cording to a theme, is usually carried out by means of appropriate heuristics,
which direct the crawling process. Such a strategy involves determining how rele-
vant a certain page is to a specific topic of interest. Most of the current strategies
rely on text classifiers to determine such relevance [2,4,12,13], with the additional
cost of having to train the classifiers. We take a different approach in this paper
by explicitly considering genre (text style) and content-related aspects of a page,
and by evaluating, according to these aspects, the relevance of this page to the
information needs expressed by a user.

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 62–73, 2007.
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As such, the work described in this paper has, as its main goal, to establish
a framework to allow the construction of effective, efficient and scalable focused
crawlers that take into consideration both the genre and the content of the de-
sired pages. More specifically, we propose a focused crawling approach designed
to situations in which the specific topic of interest can be expressed by two
distinct sets of terms: the first expressing genre aspects of the desired pages,
and the second one related to the subject or content of these pages. Examples
where this happens include syllabi of specific courses, curricula vitae of profes-
sionals or job offers in a particular field, sale offers of specific products, software
documentation, etc. Thus, distinctly from previous approaches in the literature
[4,7,9,11,12,13], our approach exploits both the genre and the content of the Web
pages to guide the crawling process.

In order to demonstrate the effectiveness, efficiency and scalability of the
proposed approach, we conducted a set of experiments, involving topics related to
the theme “education in the field of computing”, more precisely syllabi of certain
courses. As we shall see, the results of these experiments show that a focused
crawler constructed according to our approach achieves F1 levels superior to 92%,
which represents an average gain of 178% over traditional focused crawlers. In
addition, our focused crawler required the analysis of no more than 60% of the
visited pages in order to find 90% of the relevant pages, while traditional focused
crawlers have to analyze at least 75% of the visited pages to achieve the same
goal. Thus, the main contribution of this work is a novel approach to focused
crawling that does not require a training phase and exploits genre and content-
related aspects of the desired pages, which results in an effective, efficient and
scalable strategy for focused crawling.

The rest of this paper is organized as follows. Section 2 addresses related work.
Section 3 presents our proposed approach to focused crawling. Section 4 describes
the set of experiments conducted to evaluate our approach and discusses the
results obtained. Finally, Section 5 concludes and gives perspectives for future
work.

2 Related Work

Since the first proposals for focused crawlers, such as FishSearch [3], a great vari-
ety of methods has been proposed for this purpose. According to Pant and Srini-
vasan [13], many crawling algorithms are variations of the Best-First crawler, in
which a list of non-visited URLs is kept as a priority queue. Each non-visited
URL has a score associated to it, which reflects the benefits of following this
URL, determining, therefore, its priority to be visited. Variations of the Best-
First crawler can be created changing the heuristics used to give scores to a
URL in the priority queue. The Naive Best-First crawler [10] measures the rele-
vance of a page to a specific topic by calculating the cosine between the vector
of terms that represent that page and the vector of terms that represent the
topic of interest. Then, it uses this result to estimate the benefit of following
the URLs found in that page. FishSearch [3] uses a similar measure combined
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with the notion of depth limit, which prevents the exploration of paths leading
to a sequence of irrelevant pages. SharkSearch [5] proposes a more sophisticated
technique to classify the non-visited URLs, which is based on the anchor text,
i.e., the text surrounding a link, and the inherited scores of ancestor pages to
influence the scores of the non-visited URLs.

In [9], algorithmic aspects of focused crawlers are analyzed. For this purpose,
a set of crawling algorithms considered as representatives in the literature was
implemented, including: Breadth-First, PageRank and SharkSearch. Based on
the evaluation of such crawling strategies, a new class of crawling algorithms,
named InfoSpiders, was designed and implemented, presenting an improved per-
formance. These algorithms include adaptive mechanisms, that is, mechanisms
that promote the change of the crawler’s behavior according to the context found
during the crawling. It was concluded that a crawler that uses evolutionary al-
gorithms reaches high scalability, due to the distribution of work through their
concurrent agents, resulting in a better performance/cost ratio. Another dis-
tinct approach for focused crawling is proposed in [7]. This approach uses two
probabilistic models, HMMs (Hidden Markov Models) and CRFs (Conditional
Random Fields), to model the link structure and the content of documents lead-
ing to target pages by learning from user’s topic-specific browsing. A focused
crawler constructed according to this approach is treated as a random surfer,
over an underlying Markov chain of hidden states, defined by the distance from
the targets, from which the actual topics of a Web page are generated. Ex-
perimental results show that the proposed crawler often outperforms Best-First
crawlers.

Another class of solutions for focused crawlers comes from Machine Learning
and makes extensive use of classifiers. In this context, a classifier has the role of
deciding whether a URL found during the page traversal is to be followed or not.
According to [13], a traditional focused crawler guided by a classifier works as
follows. Firstly, a priority queue is initialized with the URLs of the seed pages.
Then, a non-visited URL is selected from the queue based on a score assigned by
the classifier, and the corresponding page is fetched from the Web and abstractly
represented in terms of its content (e.g., by a feature vector). At this moment,
the abstract representation of the page is analyzed by a classifier and a score
that measures the pertinence of the page to the desired topic is given. All URLs
of the analyzed page are placed in the priority queue with the same score of
this page. This process is repeated until there are no more URLs in the queue.
Notice that, previously to the crawling process, the classifier must be trained
with positive and negative examples of pages to be crawled.

The work described in [2] was the first one to use a classifier, in this case
a Naive Bayes classifier, in order to guide a focused crawler. The basic idea
behind such a crawler is to classify the crawled pages within the categories of a
given taxonomy. The crawler, then, uses examples of URLs to create a Bayesian
classifier, which is capable of determining the probability “P(c—p)” of a crawled
page “p” to belong to a category “c” in the taxonomy. The work in [4] has
proposed a variation of this crawler, naming it a context-focused crawler. Such
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a crawler uses a set of Naive Bayes classifiers that are trained to estimate the
link distance between a crawled page and the relevant pages. In [12], the effects
of various definitions of link contexts (i.e., terms that appear in the text around
a hyperlink within a Web page) on the performance of SVM classifier-guided
focused crawlers are investigated. The results show that a crawler that exploits
words both in the immediate vicinity of a hyperlink as well as the entire parent
page performs significantly better than a crawler that depends on just one of
those clues. Moreover, a crawler that uses the tag tree hierarchy within Web
pages provides effective coverage.

The work in [13] presents a systematic and comparative study involving exper-
iments that explore many versions of the Naive Bayes, SVM and Neural Network
classifying schemes. The experiments were performed in a collection of over 100
topics, therefore allowing statistically valid conclusions to be drawn. A crawling
environment was designed and developed, which allowed new classifiers to be
flexibly added. The results show that Naive Bayes is a weaker choice, when com-
pared to SVM and Neural Network, to control a focused crawler. SVM seems
to be the best choice among the three, since it performs similarly to a Neural
Network, but requiring a lower training cost. Another framework to evaluate
different focused crawling strategies is described in [15].

While previous work on focused crawling rely on a single concept space (i.e.,
the topic of the pages) for driving the crawling process, the use of other equally
important concept spaces has been neglected in the literature, being the genre
of the pages a notable example. The approach presented in this paper is, to best
of our knowledge, a first attempt towards this direction.

3 Overview of the Proposed Approach to Focused
Crawling

Our approach relies on the fact that some specific topics of interest can be
represented by considering two separate aspects: its genre and content-related
information. For instance, if a user wants to crawl Web pages that include syl-
labi of database courses, a focused crawler should analyze a specific Web page
considering, separately, the terms present in that page that indicate that it cor-
responds to a syllabus (terms that characterize the course syllabus genre) and
the terms that indicate that the page is related to the field of databases (terms
that appear in a syllabus content of a database course). On the other hand, a
traditional focused crawler guided by a classifier analyzes the content of a spe-
cific Web page, but does not consider separately the two kinds of information.
Therefore, pages that include syllabi of other courses, as well any page referring
to topics in the field of databases, could be selected by this crawler as being
related to a database course (precision errors), whereas pages with genre and
content poorly specified but including a syllabus of a database-related course
would be classified as belonging to the “other” category (recall errors).

Thus, our focused crawling approach considers a set of heuristics to guide a
crawler, in such way that it allows the separate analysis of the genre and the
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content of a Web page. In addition, it also considers the page URL string, since it
may include terms related to both the genre and the content of the desired topic
of interest. Our set of heuristics has been designed with two main objectives:
improving the level of F1 of the crawling process and speeding up the crawling
of relevant pages.

To crawl Web pages related to a specific topic of interest, we use the proce-
dure FCrawl described in Fig. 1. This procedure takes as input sets of terms that
represent the genre (GenreTerms) and the desired information content (Content-
Terms), and outputs a set of relevant pages (RelevantPages). Eventually, another
set of terms, representing the URL string (URLTerms) of a page related to this
topic, can also be specified. Each URL string term is related to the page genre or
to the desired content. This procedure also takes as input a set of URLs point-
ing to seed pages (SeedPages) and two additional parameters: (1) the similarity
threshold (SimilarityThreshold), that indicates whether a specific visited page is
relevant or not, and (2) the change threshold (ChangeThreshold), that indicates
whether the score of a URL may be changed during the crawling process. A list
of non-visited URLs is kept in a priority queue called Frontier. In addition, this
procedure invokes the following pre-defined procedures and functions:

– InsertURL(URL,score,URLtype): inserts in Frontier a URL with a specific
score and URLtype (“seed” or “non-seed”);

– RemoveURL(URL,URLtype): removes from Frontier the URL with the high-
est score, returning such a URL and its URLtype;

– FetchParsePage(URL,page,terms,links): fetches and parses the page pointed
by URL, returning the actual page and its sets of terms and links ;

– CosineDistance(page,terms): returns the cosine distance between a page and
a set of terms ;

– Mean(similarity1,similarity2,weight1,weight2 ): returns the weighted mean
between two similarity values according to weights assigned to them;

– ChangeScores(URL,newscore): changes to newscore the score of the URLs
in Frontier that correspond to sibling pages of a given URL.

Procedure Fcrawl works as follows. Step 01 initializes Frontier with the URLs
of the seed pages, setting the URL scores to 1. For each URL in Frontier (step
02), the corresponding page is visited (step 04) and its content analyzed (steps
05 to 09). The cosine similarity function is applied separately to each set of terms
(steps 05, 06 and 08), generating a specific similarity score between the current
page and the sets of terms that represent, respectively, the genre, the content
and the URL string of the desired pages. Then, these scores are combined into
a final single one (steps 07 and 09) and compared with a given threshold. If this
final score is greater or equal to this threshold, the visited page is included in
the set of relevant pages (step 10). As we shall see, determining the relevance of
a page to a specific topic by considering separately pieces of evidence related to
its genre and content is the main reason for the F1 levels we have achieved with
our approach. Next, if the current page is a non-seed one, the final similarity
score is compared with a second threshold to determine whether the scores of
URLs in Frontier that correspond to children of the current page’s parent may
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Procedure FCrawl
Input: GenreTerms, ContentTerms, URLTerms, SimilarityThreshold,

ChangeThreshold, SeedPages;
Output: RelevantPages;
Begin

let GW, CW, GCW and UW be weights of importance for the genre, the
content, the genre-content combination and the URL string respectively;

01 foreach (pageURL in SeedPages) do
InsertURL(pageURL,1,"seed");

end-foreach
02 while (there are non-visited URLs in Frontier) do
03 RemoveURL(CurrentURL,URLType);
04 FetchParsePage(CurrentURL,CurrentPage,PageTerms,PageLinks);
05 GenreSimilarity := CosineDistance(PageTerms,GenreTerms);
06 ContentSimilarity := CosineDistance(PageTerms,ContentTerms);
07 CombinedSimilarity := Mean(GenreSimilarity,ContentSimilarity,GW,CW);
08 URLSimilarity := CosineDistance(PageTerms,URLTerms);
09 FinalSimilarity := Mean(CombinedSimilarity,URLSimilarity,GCW,UW);
10 if (FinalSimilarity >= SimilarityThreshold) then

RelevantPages := RelevantPages + CurrentPage;
end-if

11 if (URLType = "non-seed" and FinalSimilarity >= ChangeThreshold) then
ChangeScores(CurrentURL,FinalSimilarity);

end-if
12 foreach (link in PageLinks) do

InsertURL(link,0,"non-seed");
end-foreach

end-while
End

Fig. 1. The procedure FCrawl

be changed (step 11). Finally, the links previously extracted from the current
page are inserted into Frontier (step 12) having their scores set to 0.

The strategy of dynamically changing the crawling priority of the non-visited
pages is the reason for the performance of our crawling approach since it allows
for relevant pages to be crawled as soon as possible. This occurs because in
situations where a topic can be separately represented in terms of genre and
content, we observed that the parent of a relevant page often contains other
URLs that also point to relevant pages. On the other hand, a relevant page does
not usually include a link to another relevant page. For example, considering
that a crawler located a page that includes the syllabus of a database course,
URLs of other relevant pages can be found in the page of the graduate program
which that course is part of or in the page that includes the list of courses taught
by a certain professor, whereas it is unlikely to find URLs of relevant pages in
the actual page that includes the course syllabus. In fact, this strategy is a very
common navigation pattern found on the Web [6].
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4 Experimental Evaluation

4.1 Experimental Design and Setup

In order to conduct our experiments, we implemented a crawler based on the
procedure FCrawl described in Fig. 1. In our experiments, this crawler was run
in the context of the Brazilian Web with the purpose of crawling pages related
to syllabi of specific computer science courses. Three disciplines with distinct
characteristics were chosen as specific subjects: “databases”, which is a disci-
pline whose content is well-consolidated, “data structures”, which is also a well-
consolidated discipline but whose content may be dispersed into several courses,
and “information retrieval”, which is a discipline whose content is not yet well-
consolidated due to its fast recent evolution.

Five seed pages of Brazilian higher education institutions were used. To repre-
sent the genre (course syllabi), we specified a set of 15 terms (or phrases) such as
“syllabus”, “course description”, “instructor”, “prerequisites”, “tentative sched-
ule”, “topics” and “required text”, no matter the discipline. For each chosen
discipline, a specialist on the subject specified a set of approximately 20 terms
to represent the content of its syllabus and another one with five terms to repre-
sent the URL string of good links to pages related to that discipline. Examples
of terms used for representing the “databases” subject were “database”, “data
model”, “entity-relationship”, “relational model”, “sql” and “normalization”. It
is important to notice that the specification of these sets of terms is a simple
task when compared with the effort required to train a classifier. For instance,
Fig. 2 illustrates a typical course syllabus page found on the Web. As we can see,
the terms that characterize this page as such are easily recognized. Finally, for
each discipline, an answer set containing the relevant pages among those visited
by the crawler was also specified in order to allow us to assess the effectiveness
of our crawler.

As known from conventional IR applications [1], in order to apply the cosine
measure to evaluate a query against to a specific collection of documents, it
is necessary to compute first, for each query term, an IDF (Inverse Document
Frequency) value that indicates the importance of that term inside the collection.
Thus, to be able to implement the function CosineDistance used by the procedure
FCrawl, it would be necessary to compute IDF values for all terms specified by
the specialists. However, our experiments have shown that calculating the IDF
value for each term does not have a strong influence on the effectiveness of our
approach, since it reaches similar F1 levels even when we consider the IDF value
equal to 1 for all terms. This allows us to disregard the IDF value calculation
step in our approach, which has obvious implications in terms of performance.

Thus, for this reason and due to the lack of space, in this paper we only
report the results of the crawling processes that considered the IDF value equal
to 1 for all terms. We will refer to these crawling processes as DS (topic “data
structure course syllabi”), DB (topic “database course syllabi”), and IR (topic
“information retrieval course syllabi”).
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Fig. 2. A relevant page for the “databases” subject

Baselines. Classifiers are a natural option to guide a focused crawler. Therefore,
in order to establish a baseline for comparing the results obtained with our ap-
proach, we developed a crawler guided by an SVM Radial Basis Function (RBF)
classifier, one of the best classifiers for this kind of application according to [12],
following the traditional focused crawling strategy described in Section 2. Thus,
we considered as our baselines the following crawling processes executed with this
crawler: RBF-DS (topic “data structure course syllabi”), RBF-DB (topic “data-
base course syllabi”), and RBF-IR (topic “information retrieval course syllabi”).

Each SVM RBF classifier was trained considering around 40 pages related
to the desired topic and around 500,000 pages related to different topics, rep-
resenting a sub-collection of the Brazilian Web. The F1 levels obtained by the
crawling processes RBF-DS, RBF-DB and RBF-IR were, respectively, 46.48%,
45.83% and 23.26%.

Parameters Setting. According to steps 07 and 09 of the procedure FCrawl,
our focused crawling approach performs arithmetic combinations among previ-
ously calculated similarity values. Each combination is performed, simply, by
calculating the weighted average of the similarity scores involved. Thus, it was
necessary to establish a “weight of importance” for each similarity value. We
established such a weighting scheme experimentally, varying the values of the
weights and analyzing the results obtained. With respect to step 07, the best
results were reached considering the weight 5 to both genre (GW ) and content
(CW ), since they are equally important. With respect to step 09, the best results
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were reached considering the weights 7 and 3 to the genre-content combination
(GCW ) and the URL string (UW ) respectively, since for most pages the terms
that form their URLs are usually not so relevant.

Finally, for practical reasons, in our experiments we made the following deci-
sions: (1) we disregarded pages of certain Brazilian Web domains (e.g., “.gov.br”)
or that included some type of undesired content (e.g., “.exe”), which were not
relevant to the context of the topics considered; (2) we limited the depth that
the crawlers could reach within a site (maximum number of levels of the Web
sub-graph of a site); (3) likewise, we limited the maximum number of URLs
present in a page that should be followed; and (4) we standardized the content
of the visited pages, by eliminating accents, capital letters and stop-words.

4.2 Effectiveness

As mentioned before, our focused crawling approach uses a set of guiding heuris-
tics that has been designed with two main objectives: improving the F1 level of
the crawling process and speeding up the crawling of relevant pages. In our exper-
iments, we measured the F1 level after the execution of each crawling process.
We also notice that, in the crawling processes we executed, our crawler vis-
ited almost 60,000 pages. Fig. 3 shows the F1 levels obtained by each crawling
process, considering different threshold options. As we can see, for all topics,
our focused crawler reached F1 levels superior to 92%, with different similarity
thresholds. That is, even considering disciplines with distinct characteristics, the
results achieved by our focused crawler are very good. Moreover, once the F1
value starts to diminish, it never surpasses its peak value again since the recall
measure also starts to diminish, meaning that it is not necessary to vary the
threshold anymore. The crawling process DS shows the worst results due to the
fact that the content of the discipline “data structures” is dispersed in many
distinct courses; thus, some syllabi have not been classified correctly because
many content terms specified for this discipline did not appear in these syllabi.

We also notice that most crawling processes did not achieve 100% of F1.
By manual inspection, we verified that this was mainly due to precision errors

Fig. 3. F1 x Similarity Threshold (our approach)
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because certain course syllabi included the content of other courses (e.g., a soft-
ware engineering course included a database module). Moreover, some recall
errors were due to ill designed syllabi (e.g., some database course syllabi did not
show any term that could properly characterize the genre).

In addition, the results presented in Fig. 3 also show that our crawler clearly
outperforms the crawler guided by the SVM RBF classifier, since it achieves,
for all crawling processes, F1 levels that are significantly higher than the ones
achieved by the crawler guided by the SVM RBF classifier (see Subsection 4.1).

4.3 Efficiency and Scalability

A key issue of any crawler is efficiency, i.e., its capability of crawling relevant
pages as fast as possible. Fig. 4 shows the percentage of relevant pages retrieved
in comparison with the percentage of visited pages during all crawling processes.
For the crawling processes DS, DB and IR, we considered those with the simi-
larity thresholds that achieved the best levels of F1. As we can see, our crawler
is much more efficient than the crawler guided by the SVM RBF classifier since,
for all crawling processes, it presents a better convergence to 100% of coverage
of the relevant pages.

Fig. 4. Percentage of relevant pages x Percentage of visited pages

Considering the crawling processes executed according to our approach, a large
percentage of relevant pages are retrieved with only 15% of the visited pages and,
with 60% of the visited pages, at least 90% of all relevant pages are retrieved,
which represents an average gain of 82% over the baseline crawling processes.
This is a consequence of our strategy of dynamically changing the crawling pri-
ority of the non-visited pages, as discussed in Section 3. Once again, the crawling
process DS shows the worst results due to the fact that the content of the disci-
pline “data structures” is often scattered among pages from many distinct courses,
which means that there would be more relevant pages to be crawled in other sites.
On the other hand, the crawling process IR, that corresponds to a discipline not
yet well-consolidated, shows the best results (only 20% of the visited pages re-
quired to find all relevant pages). This good performance might be due to the fact
that there are few relevant pages on this subject to be crawled.
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To evaluate the scalability of our approach, an analysis of the average amount
of visited pages per relevant page retrieved was performed. The results are shown
in Table 1, considering only the crawling processes that yielded the best results.
As we can see, the baseline crawling processes present an average amount of
visited pages per relevant page retrieved much higher than those presented by
the crawling processes executed according to our approach.

Table 1. Amount of visited pages per relevant page retrieved

Crawling Average amount of Crawling Average amount of
(our approach) visited pages (baseline) visited pages

DS 710.55 RBF-DS 1675.85

DB 1105.40 RBF-DB 3984.00

IR 1199.00 RBF-IR 9178.00

All crawling processes were executed on the same computer. Our focused
crawler took 3 to 4 hours to complete each crawling process, due to the simplicity
of the set of heuristics it uses. On the other hand, the baseline crawling processes
took 3 to 4 days to perform the same tasks; moreover, they required an additional
training phase that took around 4 hours.

5 Conclusions

Focused crawlers are an important class of programs that have as their main goal
to efficiently crawl Web pages that are relevant to a specific topic of interest.
The work presented in this paper proposes a novel focused crawling approach
aimed at crawling pages related to specific topics that can be expressed in terms
of genre and content information. The effectiveness, efficiency and scalability
of this approach are demonstrated by a set of experiments we conducted for
crawling pages related to syllabi of specific computer science courses.

As shown by our experimental results, the major benefits of our focused crawl-
ing approach, compared with traditional ones based on classifiers, are: (1) im-
provement of the level of F1 in the crawling process, (2) more efficiency in the
crawling process since only a small percentage of pages is required to be visited
to crawl a large percentage of relevant pages, and (3) higher scalability since our
approach adopts a simple set of heuristics to determine the relevance of a page
as well as to guide the crawling, and does not require a training phase.

At the moment, we are conducting new experiments involving other domains
for which the set of pages to be crawled can be expressed in terms of their genre
and content (preliminary results with job and sale offers have also achieved high
levels of F1). As future work, we intend to: (1) develop a strategy to facilitate
the specification of the genre and content terms required to guide the crawling
process, although the specification of these terms is not a complex task, and
(2) devise a strategy to find the optimum similarity threshold to be used in a
crawling process.
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Abstract. This paper studies the impact of the tail of the query distribution on
caches of Web search engines, and proposes a technique for achieving higher hit
ratios compared to traditional heuristics such as LRU. The main problem we solve
is the one of identifying infrequent queries, which cause a reduction on hit ratio
because caching them often does not lead to hits. To mitigate this problem, we in-
troduce a cache management policy that employs an admission policy to prevent
infrequent queries from taking space of more frequent queries in the cache. The
admission policy uses either stateless features, which depend only on the query,
or stateful features based on usage information. The proposed management pol-
icy is more general than existing policies for caching of search engine results,
and it is fully dynamic. The evaluation results on two different query logs show
that our policy achieves higher hit ratios when compared to previously proposed
cache management policies.

1 Introduction

Without search engines, finding new content on the Web is virtually impossible. Thus,
a large number of users submit queries to search engines on a regular basis in search of
content. As the number of users is large and the volume of data involved in processing
a user query is high, it is necessary to design efficient mechanisms that enable engines
to respond fast to as many queries as possible. An important mechanism of this kind is
caching. In search engines, users submitting popular queries can benefit from a mecha-
nism that stores the results for such queries in a cache memory, as the engine does not
need to recompute results that are requested frequently enough. Caching query results
then improves efficiency if the cached queries occur in the near future.

A cache comprises a memory space and an implementation of a cache management
policy. As cache memories are limited in size, it is necessary to evict entries when the
cache is full and there is a new entry to add. To evict entries, a cache has to implement
an eviction policy. Such a policy ideally evicts entries that are unlikely to be a hit, i.e.,
to be requested while in the cache. A simple and popular strategy is to evict the least
recently used item from the cache [1]. This policy is known as LRU (Least Recently
Used). In search engines, the entries in a cache can comprise, for example, query results
and posting lists [2]. In this paper, we focus on query results. Henceforth, we say that a
query is cached to denote that the results of the query are cached.
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The problem with using only eviction policies in Web search engines is that the
results for all queries are admitted to the cache, including those that will never appear
again. Storing the results for these queries turns out to be fruitless since they cannot be
cache hits. Until they are evicted from the cache, they “pollute” it in the sense that they
use cache space, but they do not generate any cache hit. Since the frequency of queries
follows a power law, there is a great percentage of queries that never appear again – at
least not in a near future.

In this work, we propose the use of admission policies to prevent infrequent or even
singleton queries from polluting the cache. Such policies are implemented in the form
of an estimator that predicts whether a query is infrequent or whether it is frequent
enough to be cached. The estimator can use either stateless features, which depend
on each query, or stateful features, which are computed from usage information. We
assume that there is a relation between the features and the future frequency of queries,
even though we do not explicitly model it. To evaluate the efficiency of our policies, we
use the hit ratio of the cache, instead of accuracy of frequency prediction.

Our cache management policy for search engine results comprises an eviction policy
and an admission policy, and it divides the memory allocated for caching into two parts.
The queries cached in the first part are the ones that the admission policy predicts as
frequent or, more generally, likely to be a hit in the future. The remainder of the queries
are cached in the second part of the memory. The experimental results from applying
an admission policy, as described above, show that we obtain improvements over LRU
and SDC, which is currently one of the best management policies for caching results in
Web search engines.

Related work. The observation on filtering out infrequent queries has not been directly
used in the design of caches for Web search engines so far. Markatos [3] investigated
the effectiveness of caching for Web search engines. The reported results suggested that
there are important efficiency benefits from using caches, due to the temporal locality
in the query stream. Xie and O’Hallaron [4] also found that the distribution of query
frequencies follows a Zipf distribution, very popular queries are issued by different
users, and longer queries are less likely to be shared by many users.

On cache management policies, Lempel and Moran [5] proposed one that considers
the probability distribution over all queries submitted by the users of a search engine.
Fagni et al. [6] described a Static Dynamic Cache (SDC), where part of the cache is
read-only or static, and it comprises a set of frequent queries from a past query log.
The dynamic part is used for caching the queries that are not in the static part. This last
work is the most closely related to the problem of polluting queries, because it actively
protects the most frequent queries and always keeps them cached. The solution of SDC,
however, only addresses the problem of polluting queries indirectly, while it introduces
the constraint of the static cache.

In a different context, on caching of memory pages in operating systems, there has
been work on splitting the memory available for caching according to the type of traffic.
For example, the adaptive replacement cache (ARC) [7] uses two lists, one for recent
references and one for frequent references. One the main features of ARC is that it
adapts the lengths of the two lists. Compared to ARC, we instead try to separate very
frequent references from infrequent ones, and we investigate different policies.
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Using multiple levels of caches for storing query results and postings of query terms
[8] or even intersections of posting lists for query terms [9] result in improved hit ratio
values (the hit ratio is the total number of hits over the total query volume). In this work
we focus on caching of query results and we do not consider the problem of caching
posting lists.

Finally, caching has been considered for Web applications that generate content dy-
namically [10,11]. One main difference from our work to the work of Sivasubramanian
et al. and Olston et al. is their focus on applications that access one or more databases.
One of the main challenges is to maintain database consistency as transactions change
the state of the backend database. Search does not have a similar constraint because
queries do not change the state of the data structures used to compute results. For feder-
ated databases, Malik et al. [12] have used admission policies for caching to minimize
network communication overhead. Although they use the same concept of admission
policy, the policies they use are different compared to the ones we propose.

2 Data Characterization

We use two query logs in our experiments. The first one corresponds to queries sub-
mitted to the Altavista Web search engine during a week in autumn 2001. The second
query log corresponds to queries submitted to yahoo.co.uk during one year.

The queries in both logs have very similar length characteristics. The average length
in characters and words of queries in the Altavista log are 17 and 2.6, respectively. The
queries in the UK log consist on average of 17 characters and 2.5 words.

For caching, temporal locality is an essential property because if consecutive oc-
currences of the same query happen close together in time, then eviction policies can
be highly efficient. To measure and compare temporal locality of the two query logs,
we use a traditional technique that consists of computing the stack distance between
two occurrences of the same query [13]. The stack abstraction works as follows. When
processing a query stream, we process one query at a time. For each new query q, if q is
not in the stack, then we push it onto the stack, and count it as an infinite stack distance.
Otherwise, suppose that d is the depth of the query q in the stack, remove q from its
current place in the stack and push it onto the top. The stack distance in this case is d.
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Figure 1 shows the cumulative stack distance distribution for normalized distance
values of both query logs. We use the total volume of each log to normalize the stack
distance of the corresponding log. Note, however, that the total volume of the Altavista
log is smaller compared to the total volume of the UK log. Thus, the same normalized
value corresponds to a smaller absolute value in the Altavista log.

In this graph, there are two important observations. First, the highest probability
is 0.7 for the Altavista log and 0.5 for the UK log. These probability values are not
1.0 because of singleton queries and compulsory misses. For such queries, the stack
distance is infinite. Thus, in the Altavista log, we observe that a larger fraction of the
query volume comprises repeated queries. Second, for the same distance value, the
cumulative probability is higher for the Altavista log. If we pick x = 0.1 as an example,
then the difference between the cumulative probabilities is roughly 0.2. Note that the
difference between the two curves is roughly the same across the values in the x range.
It happens because the difference for the maximum value of x is 0.2 and the increments
are small for values of x larger than 0.1 due to the small fraction of large distance
values.

As the stack distance between two consecutive occurrences of the same query has a
higher probability of being short for the Altavista log, we conclude that the Altavista
log presents significantly more temporal locality compared to the UK log. This is not
surprising because of the higher volume of the UK log and its time span.

The actual frequency distributions of queries of the two logs, shown in Figure 2,
confirm the conclusions above. From the figure, both distributions follow a power law
distribution: the distribution for the Altavista log has slope −1.71 and the distribution
for the UK log has slope −1.84. For the Altavista log, the singleton queries, which
appear only once, correspond to 19% of the total query volume and to 62% of the
unique queries. A cache that has an infinite amount of memory to store the results for
all observed queries without any eviction, would achieve a hit ratio of 70.21%. For
the UK query log, the singleton queries correspond to a higher percentage of the total
volume of queries. More specifically, the set of singleton queries comprise 44% of the
total volume and 88% of the unique queries. An infinite cache achieves 50.41% hit ratio.
In the next section, we elaborate on the impact of the infrequent queries on caching.

3 Polluting Queries

A predominant characteristic of query streams is the presence of infrequent queries,
in particular of queries that appear just once. For such queries, caching is often not
effective because either there is a large number of other queries separating consecutive
occurrences, or simply they never occur again. Moreover, using cache space for such a
query might imply evicting the results of another more frequent query, thus increasing
the number of cache misses. The basic idea of our approach consists of determining
which queries are infrequent ones, and caching them in a separate part of the memory.

Table 1 illustrates the benefits of our approach. We compare two different caching
policies: the optimal-admission policy and the least recently used (LRU) policy. The
optimal-admission policy knows when a query will never appear again, and it does not
cache such a query. On the other hand, if a query will appear again in the future, then the
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policy accepts it and it uses the LRU policy to determine which query to evict, assuming
the cache is already full.

From the table, we observe that for the Altavista log the LRU policy achieves a high
hit ratio already (between 59% and 65%), but the optimal-admission policy is still able
to obtain even higher values (between 67% and 70%). For the UK log, however, using
the optimal-admission policy enables an absolute increase in the hit ratio of over 10% in
all three cases. This difference is mainly due to the amount of temporal locality in these
logs, observed in the previous section. As the UK log presents less temporal locality,
the policy controlling admission has a higher impact.

Table 1. Hit-ratio (%) comparison between the optimal-admission policy and LRU for different
cache sizes in number of queries

Optimal LRU
Cache size AV UK AV UK

50k 67.49 32.46 59.97 17.58
100k 69.23 36.36 62.24 21.08
250k 70.21 41.34 65.14 26.65

These results show that if we design heuristics that accurately determine which
queries do not occur frequently, then we can improve significantly the hit ratio of caches
for query results.

4 Admission Policies and Caching

This section describes a family of cache management policies (AC) that use an admis-
sion policy to separate infrequent queries from frequent ones. There are different ways
of making a module implementing an admission policy interact with the cache. For
example, we can have each query q sequentially evaluated: the admission policy first
evaluates q, and, depending on the outcome, the cache processes the query in different
ways. Alternatively, the admission policy evaluates the query and the cache verifies if
the results are stored in parallel. The cache, however, has to wait for the outcome of the
admission policy evaluation before applying its eviction policy. In this paper, we use
the former, as the latter is mainly an optimization.

The proposed cache has two fully-dynamic parts. The first part is an admission-
controlled cache. We call this part controlled cache (CC), because it only admits those
queries that the admission policy classifies as future cache hits. All queries the ad-
mission policy rejects are admitted to the second part of the cache, which we call un-
controlled cache (UC). In our experiments in the next section, the uncontrolled cache
implements a regular cache, more specifically LRU. We also use LRU for the controlled
cache. Figure 3 shows how a query stream is processed with AC.

The rationale behind this management policy is similar to that of SDC [6], but it
makes the first part of the cache more flexible and dynamic rather than static: the con-
trolled part will contain those queries that are likely to be hits. Ideally, with a perfect
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Fig. 3. Sequence of actions performed when a new query q arrives at a cache

admission policy, there would be no need for the uncontrolled cache. However, imple-
menting such an admission control policy is in general difficult. More specifically, if
this admission control policy is based, for example, on frequency, then its estimation on
hits and misses is not perfect due to the temporal locality of some infrequent queries.

The uncontrolled cache can therefore handle queries that are infrequent, but appear
in short bursts. Recall that the admission policy will reject queries that it determines to
be infrequent. Infrequent (or unpopular) queries then may be asked again by the same
user and within a short period of time. The uncontrolled cache handles these cases.
Thus, AC guarantees that fewer infrequent queries enter the controlled cache, which is
expected to handle temporal locality better.

To decide upon which queries to cache in the controlled part and the ones to cache
in the uncontrolled part, we use an admission policy. Given a stream of queries Qs, an
admission policy is a function f : Qs → {0, 1} that decides, for each query q ∈ Qs

of the stream, whether it should be cached in the controlled part (f(q) = 1) or in
the uncontrolled part (f(q) = 0). The generality of AC lies in the fact that various
admission policies can be applied. For example, SDC is now a special case, which
results from the following admission policy:

f(q) =
{

1 if q is among the |CC| most frequent queries in a given training set
0 else

(1)

With this admission policy, CC is static (no query ever needs to be evicted) and after
some time, it will contain the same queries that would be in the static part of an SDC
cache.

Now, other admission policies – that admit more queries – can be used to make
CC more dynamic and hence more effective. To design a good admission policy, one
needs to think of features that may be useful in distinguishing future cache hits from
future misses. A feature in this context is some property of a query that the admission
policy uses to determine in which part of the memory to cache it. Some options for such
features will be discussed in the next sections.

4.1 Stateful Features

Stateful features are based on historical usage information of a search engine, and in
general, they require extra memory space to hold statistics. Typically, these statistics are
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related to the frequency of query substrings (e.g., words, n-grams) or the whole query.
For example, a simple admission policy with a “stateful” feature admits all queries
whose frequency in a training set of past queries is above a threshold k. It may be
necessary to tune this threshold before applying the policy. In addition, the frequency
statistics may need to be updated in regular intervals.

With respect to the extra amount of memory needed for the frequency-based feature,
there are three important observations. First, this amount of memory is small compared
to the total cache memory. For example, if the cache stores 20Kbytes for 100K queries,
then it requires approximately 2GB of memory, while the amount of memory required
for the state of the Altavista query log, corresponding to 1.4 million queries, is approx-
imately 30MB, which is less than 2% of the space used for the cache. Second, we did
not try to make the data structure holding frequency information efficient with respect
to space. In fact, the 30MB value includes all the queries in the training set, although we
do not need to keep all of them depending on the value of the frequency threshold. Al-
ternatively, one can use a more space-efficient representation for queries, such as Bloom
filters or other hash-based schemes. Hence, the 30MB value is an upper bound in the
case of the Altavista query log. Even considering this additional amount of memory for
LRU and SDC, preliminary experiments have shown that the resulting increase in hit
ratio is negligible, as we have verified. Third, search engines often maintain statistics
about the query stream for reasons such as improving the quality of the results returned.
In this case, the information the feature requires may be readily available, and no extra
amount of memory is necessary. For these reasons, we decided not to consider this extra
amount of memory for LRU and SDC in our experiments.

4.2 Stateless Features

A stateless feature is a feature that can be readily computed from the query stream
itself, without making use of collected information. The advantage of stateless features
is that they neither require keeping track of statistics (and hence no update over time)
nor memory space for storing such information.

Examples of potentially useful stateless features include the length of a query (in
characters or words) or the number of non-alphanumerical characters in the query.
The idea behind these features is that long queries or those containing many non-
alphanumerical characters have lower probability of being popular. The corresponding
admission policies require a threshold k. Polluting queries are then queries longer than
k words or characters, or containing more than k non-alphanumerical characters.

5 Evaluation

In this section, we evaluate AC. We describe in detail the experimental setting, and then
we present our results.

5.1 Experimental Setting

To evaluate the performance of AC, we conduct a number of experiments using the logs
described in Section 2. More precisely, we use three different admission policies and
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compare them to an LRU baseline cache without admission policy and an SDC cache.
In SDC, we have a hit when a query exists in either its static or its dynamic part. In the
case of a miss, the query is introduced in the dynamic part. Here, the dynamic part of
SDC implements LRU.

We divide both logs into a training set of queries M , which we use to train an ad-
mission policy, and a test set T . The training set consists of the same absolute number
(namely 4.8 million) of queries in both cases. For our experiments, such a number of
queries is sufficient to obtain reliable frequency estimates and a test set that is large
enough for experiments with the Altavista log. Fagni et al. use the same two thirds/one
third split for the Altavista log [6]. We do not consider pages of results in our exper-
iments. That is, we consider two queries requesting different pages of results as the
same query. The underlying assumption is that it is not expensive to cache all (or at
least enough) results for each query in order to satisfy all these different requests.

The performance of a cache was measured by computing the hit ratio of a cache
simulator on the test set T . Since SDC needs to be started with a warm cache, all
caches start the evaluation phase warm. For SDC, we warm (cf. [6], section 5) its static
part by populating it with the most frequent queries from M , and we warm its dynamic
part by submitting the remaining queries to its dynamic part. For LRU and AC, we run
the policy on the training set to warm their respective caches. In all cases, however, we
count hits only for the test set T . We also report the hit ratio of the test set of an infinite
cache warmed with the corresponding training set. Note that the hit ratio values for an
infinite cache are different from the ones we report in Section 2 due to the split between
test and training.

For the Altavista log, we use caches of size 50K and 100K and for the UK log of size
100K and 500K. For AC and SDC, the ratio of the controlled vs. uncontrolled (or static
vs. dynamic) parts varies according to the parameters of the experiment. This is because
the ratio that gives the highest hit ratio depends on the cache size and on properties of
the query log.

All admission policies that we experiment with consist of just one feature and a cor-
responding threshold. Among these, there is one stateful feature, namely the frequency
of the query in M (PastF), and two stateless features, namely the length of the query in
characters (LenC) and words (LenW).

5.2 Results

Here we present the evaluation results for our proposed admission-controlled dynamic
caches, using both the stateful and the stateless features. In each table, we present the
results from the best split between static and dynamic cache for SDC, and controlled
and uncontrolled cache for AC.

We start with the stateful feature PastF. The results are shown in Table 2 and Fig-
ure 4. When we use the past frequency to decide whether to admit queries, we obtain
improved hit ratios over SDC. We can see that small caches require higher frequency
thresholds because small caches can only effectively store queries that appear frequently
enough so that they are not evicted. In the case of the AC cache with a capacity of 50K
on the Altavista log, we can see that the best thresholds kf are 7 and 8, where kf is the
frequency threshold.
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Table 2. Hit ratios (%) for the Altavista and the UK query logs using AC, where a query is
admitted in the controlled part of the cache if its frequency in the past is greater than kf . The last
row shows the percent of the LRU hit ratio relative to the hit ratio of an infinite cache.

AV
Infinite 72.32
Sizes 50K
LRU 59.49
SDC 62.25

AC kf = 6 63.16
AC kf = 7 63.19
AC kf = 8 63.19
AC kf = 9 63.16
AC kf = 10 63.08

LRU/Infinite 82.26

AV
Infinite 72.32
Sizes 100K
LRU 61.88
SDC 64.49

AC kf = 1 65.04
AC kf = 2 65.32
AC kf = 3 65.39
AC kf = 4 65.35
AC kf = 5 65.22

LRU/Infinite 85.56

UK
Infinite 51.78
Sizes 100K 500K
LRU 21.03 30.96
SDC 29.61 35.91

AC kf = 0 28.55 37.45
AC kf = 1 29.94 34.62
AC kf = 2 30.28 32.00
AC kf = 3 29.32 30.28
AC kf = 4 27.94 29.00

LRU/Infinite 40.61 59.79
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Fig. 4. Hit ratios of the stateful feature for the Altavista and UK query logs

Table 3. Hit ratios (%) for the Altavista and the UK query logs using AC, where a query is not
admitted to the controlled part of the cache if its length in characters (words) is greater than kc

(kw). The last row shows the percent of the LRU hit ratio relative to the hit ratio of an infinite
cache.

AV UK
Infinite 72.32 51.78
Sizes 50K 100K 100K 500K
LRU 59.49 61.88 21.03 30.96
SDC 62.25 64.49 29.61 35.91

AC kc = 10 60.01 59.53 17.07 27.33
AC kc = 20 58.05 62.36 22.85 32.35
AC kc = 30 56.73 61.91 21.60 31.06
AC kc = 40 56.39 61.68 21.19 30.53
AC kw = 2 59.92 62.33 23.10 32.50
AC kw = 3 59.55 61.96 21.94 31.47
AC kw = 4 59.18 61.60 21.16 30.51
AC kw = 5 59.01 61.43 20.81 30.02

LRU/Infinite 82.26 85.56 40.61 59.79
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Fig. 5. Hit ratios of the stateless features LenC and LenW for the UK query log and an AC cache
of 500K

Next we consider the stateless features. Table 3 presents the results when the AC
cache uses the length in characters or words of the query, to predict whether a query is
worth caching. In all cases, AC outperforms baseline LRU. The threshold that resulted
in the best performance is kc = 20, except for the case of the Altavista log with an AC
cache of 50K. The results are similar when we use the length in words of queries, and
the best threshold value is kw = 2. Figure 5 shows the resulting hit ratios for the two
features, LenC and LenW, for an AC cache of 500K used with the UK log.

Compared to LRU, AC achieves a higher performance because it is able to filter out
some queries that pollute the cache. However, the stateless features are not as efficient
as a predictor based on frequency, and consequently they do not outperform SDC. In
the next section, we discuss further the advantages of using such features, as well as
other possibilities for features that may improve performance.

6 On the Design of New Features

Table 1 shows that identifying perfectly if there will be another occurrence of a given
query increases the hit ratio significantly. Thus, there is an opportunity for selecting
features that can approximate an optimal admission policy. As the results of the previous
section show, an admission policy using the stateful feature based on the past frequency
of queries outperforms SDC. The stateless features LenC and LenW we have selected,
however, were not sufficient to outperform SDC, although they still outperform LRU.

Although the stateful feature PastF performs well, there are two main issues with
this feature. First, it requires the system to maintain the frequency of past queries, and
consequently to use more memory space. Second, in very dynamic environments, the
past may not correspond to the current query traffic, thus leading to poor performance.
Thus, in settings with tight memory constraints or that rapidly change the distribution of
incoming queries, stateless features are more appropriate. Designing stateless features
that perform well proved not to be an easy task, however. We have presented only two
stateless features, but we have experimented with more features which gave similar
results. It is hence an open problem if there exists a feature (or combination of features)
that can achieve a performance as good as the one of stateful features.
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There are other stateless features that are potential candidates for improving the hit
ratio, in particular features that benefit from data readily available in a search engine.
Two such cases are the frequency of terms in the text and the frequency of the query
in the text. The former needs extra memory, but that frequency information is usually
already available in the index of a search engine. The latter needs extra computing time,
but could be estimated quickly, in particular when there are few occurrences.

Another interesting open problem is the design of stateful features not based on
frequency. It is not clear whether there are stateful features that perform at least as well
as features based on frequency. For example, user sessions might contain information
useful to determine queries that will be hits.

7 Conclusions

We have shown that a simple admission policy improves upon two well-known cache
management policies: LRU and SDC. An important observation is that even a small
improvement in hit ratio represents an important increase in hits for large query logs.
For example, if we assume a fraction of 0.01 more hits out of 10 million queries, then
we have 10 thousand more hits. Moreover, as we approach the hit ratio for an infinite
cache, every small improvement is significant.

Our best admission policy uses the past frequency of queries to predict their fre-
quency in the future. To compute the past frequencies, we considered an initial training
period. Alternatively, one can use a sliding window scheme, and maintain frequency
information on the current window instead of a previous training period. As for the
benefits of our scheme with this feature, we obtained:

1. A relative improvement of 6% over LRU and 5% over SDC for the UK log with a
cache holding results for 500k queries;

2. A relative improvement of 21% over LRU and 4% over SDC for the Altavista log
with a cache holding results for 100k queries.

We have also experimented with an interesting set of policies that do not require
maintaining usage information. These policies are interesting because they improved
over LRU and they consume less memory resources. It is part of future work to deter-
mine if there exists such a policy based on stateless features that outperforms SDC.

There are plenty of open problems for future work. Among them we can mention:

– Combining different features to optimize the hit ratio using different machine learn-
ing techniques. This means optimizing the parameters and the weights of features;

– Using efficiently the space for different parts of the cache memory, as well as for
information relevant to features;

– Modeling the behavior of such cache policies along with all other parts of a search
engine to evaluate the trade-offs, in particular with respect to the infrastructure cost;

– Defining for each feature the function that establishes the relation between its
threshold value and the cache size.
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Abstract. Web archives like the Internet Archive preserve the evolutionary his-
tory of large portions of the Web. Access to them, however, is still via rather lim-
ited interfaces – a search functionality is often missing or ignores the time axis.
Time-travel search alleviates this shortcoming by enriching keyword queries with
a time-context of interest. In order to be effective, time-travel queries require his-
torical PageRank scores. In this paper, we address this requirement and propose
rank synopses as a novel structure to compactly represent and reconstruct his-
torical PageRank scores. Rank synopses can reconstruct the PageRank score of
a web page as of any point during its lifetime, even in the absence of a snap-
shot of the Web as of that time. We further devise a normalization scheme for
PageRank scores to make them comparable across different graphs. Through a
comprehensive evaluation over different datasets, we demonstrate the accuracy
and space-economy of the proposed methods.

1 Introduction

The World Wide Web is increasingly becoming a key source of information pertaining
not only to business and entertainment but also to a spectrum of sciences, culture, and
politics. The evolutionary history of the Web, an even greater source of information,
is preserved by web archives like the Internet Archive [1]. Access to these archival
collections is nowadays mostly restricted to per-URL lookups; a comprehensive search
functionality is often missing or ignores the time axis completely.

Time-travel search alleviates this shortcoming by extending the standard keyword
querying with the inclusion of a time-context of interest. The keyword query is then
evaluated over the state of the archive as of the specified time-context, i.e., only web
page versions that existed during the specified time context are considered during query
evaluation. Examples of such time-travel queries include:

(i) “Olympic Games” as of August 15th 2004 retrieves contemporary coverage about
the 2004 Olympic Games in Athens.

(ii) “Indiana Court Rules” as of May 18th 1999 finds historical statutes from the Indi-
ana judiciary.

Recently, we addressed the problem of supporting time-travel queries with IR-style rel-
evance measures [12]. In order to obtain high-quality results for these searches, it is
necessary to combine IR-style relevance measures with authority measures like Page-
Rank. Clearly, current PageRank scores cannot be used directly, since they do not ap-
propriately reflect the web pages’ authority as of the given time in the past. Instead, one
would like to use historical PageRank scores as of the specified time.

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 86–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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One naı̈ve solution to the problem would be to precompute and maintain full list-
ings of PageRank scores for a large number of observation times. Based on the current
conservative estimates on the size of the Web more than 1 Terabyte would be needed
to store monthly rankings for a period of just 5 years. While this is still manageable
in terms of storage, it is unclear i) how these rankings can be accessed efficiently at
time-travel query-processing time, and ii) how to deal with time contexts for which no
ranking was precomputed.

In this paper, we propose rank synopses as a novel structure to compactly represent
and reconstruct historical PageRank scores. Rank synopses enable the accurate recon-
struction of a web page’s PageRank score as of any time (during its lifespan), even
if no graph snapshot is available for that time, or, if PageRank scores are recomputed
only infrequently. Rank synopses require 20%-50% the amount of storage required for
retaining the full precomputed rankings and introduce only minimal disruptions in the
reconstructed rankings.

Rank synopses are constructed from time series of PageRank scores. One obstacle
when dealing with these time series is the incomparability of PageRank scores across
different graph snapshots. Due to PageRank’s probabilistic foundation and the fact that
every node in the graph is guaranteed to be assigned a non-zero score, PageRank scores
are sensitive even to non-local changes of the graph structure, such as the addition
of a completely disconnected component. This leads to arbitrary fluctuations of Page-
Rank scores across graph snapshots, deteriorating the performance of rank synopses.
We overcome this by devising a computationally efficient score-normalization tech-
nique making PageRank scores comparable across different graph snapshots.

In summary, the primary contributions1 of this paper are the following:

1. We present a novel rank synopses structure to compactly represent the evolution of
PageRank scores and reconstruct historical PageRank scores with high accuracy.

2. We introduce a new normalization technique for PageRank that makes scores com-
parable across different graph snapshots.

3. Through experiments over a variety of datasets, we demonstrate the accuracy and
space-economy of the presented techniques.

The remainder of this paper is organized as follows. Section 2 puts rank synopses in
context with related work. The normalization technique for PageRank scores is de-
scribed in Section 3. Section 4 introduces rank synopses, which are then evaluated in
Section 5. Finally, in Section 6 we conclude the present work.

2 Related Work

This section gives a short overview of work that is related to the rank synopses pre-
sented in this paper. The Web’s dynamics have attracted significant attention recently.
Two large-scale studies [20,29] examined the evolution of its content and link structure.
Ntoulas et al. [29] observed for the link structure that as much as 25% of new links are
created every week, and that 80% of links are replaced over the period of one year. Link

1 Specific aspects of this work have appeared as posters in CIKM’06 [10] and WWW’07 [11].
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analysis has attracted a lot of attention [14,16,26] since the seminal PageRank [30] and
HITS [24] methods were proposed. Several methods have been proposed [6,7,8,13,33]
that bring together the Web’s dynamics and link analysis by integrating temporal fea-
tures of the web graph into link-analysis techniques. The normalization of scores pro-
duced by link-analysis techniques has only seldomly been addressed and has mostly
been dealt with in an ad-hoc manner, e.g., by [21] who scale PageRank scores us-
ing the size of the underlying graph. One noticeable exception is [25] whose focus,
however, is on centrality measures known from graph theory and not on PageRank and
HITS.

The need for web archives has first been described by Kahle [22] who co-founded
the Internet Archive – the biggest endeavor in this regard. Currently, web archives typ-
ically support only page-by-page access as implemented, for instance, by the Wayback
Machine of the Internet Archive [1]. Comprehensive keyword-search functionality (as
offered by today’s web search-engines) is mostly missing for web archives. Only re-
cently efforts to implement such functionality have been started with the open source
NutchWAX [2] project being one notable effort.

Rank synopses are technically related to time-series segmentation techniques [23,32].
These methods are, however, aimed at accurately reconstructing individual time-series
observations. Rank synopses, in contrast, aim at accurately reconstructing a ranking for
a given time instance.

3 PageRank Score Normalization

PageRank is a well known and widely adopted link-based ranking technique. Given a
directed graph G(V, E) representing the link graph of the Web, the PageRank score
r(v) of a node v is defined as follows:

r(v) = (1 − ε)

⎛

⎝
∑

(u,v)∈E

r(u)
out(u)

⎞

⎠ +
ε

|V | (1)

with out(u) denoting the out-degree of node u and ε being the probability of making
a random jump. As a consequence of its probabilistic foundation, PageRank scores are
not comparable across different graphs as the following example demonstrates.

Consider the grey node in the two graphs shown in Figure 1. Intuitively, importance
of neither the grey node nor the white nodes should decrease through the addition of

Graph A Graph B

PageRank PageRank
(non-normalized) (normalized)

Node A B A B

White 0.2920 0.2186 1.7391 1.7391
Grey 0.4160 0.3115 2.4781 2.4781
Black – 0.1257 – 1.0000

Fig. 1. PageRank Score Incomparability (ε = 0.15)
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the two black nodes, since none of these nodes are “affected” by the graph change.
The non-normalized PageRank scores, however, as given in the corresponding table in
Figure 1 convey a decrease in the importance of the grey node and the white nodes, thus
contradicting intuition. These decreases are due to the random jump inherent to Page-
Rank that guarantees the additional black nodes to have non-zero visiting probability.
In contrast, using our normalization scheme, the PageRank scores of the grey and white
nodes are retained across two snapshots of the graph.

Referring to Equation 1, we can see that the PageRank score of any node in the graph
is lower bounded by rlow = ε

|V | , which is the score assigned to a node without incoming
edges. However, this definition does not account for dangling nodes (i.e., nodes without
any outgoing edges) – which are shown to form a significant portion of the web graph
crawled by search engines [19]. These nodes are treated by making a random jump
whenever the random walk enters a dangling node. Under this model, with D ⊆ V
denoting the set of dangling nodes, the modified lower bound for PageRank scores is
given by

rlow =
1

|V | (ε + (1 − ε)
∑

d∈D

r(d)) , (2)

which is again the score assigned to a node without incoming edges. We use this refined
lower bound for normalizing PageRank scores – for a node v its normalized PageRank
score is defined as

r̂(v) =
r(v)
rlow

. (3)

In contrast to standard PageRank scores that correspond to visiting probabilities on
the graph and thus depend on its size, the normalized PageRank scores convey how
much more likely a node is to be visited than a node having least possible importance.
Thus the normalization eliminates the dependence on the size of the graph. The com-
putational cost associated with the proposed normalization is low: one pass over the
dangling nodes is needed to sum up their scores (this can be done using one extra itera-
tion in the power method that is commonly used to compute PageRank scores) and one
additional pass over all nodes is required to normalize their scores. More details about
the normalization technique, including a proof of its robustness, can be found in [11].

Note that the proposed normalization can be applied separately for any given graph.
Thus, for instance, if PageRank scores obtained on two graphs are to be compared,
the scores can be normalized on each graph separately, i.e., without knowing the other
graph. This property is not common to all normalization schemes and centrality indices
as pointed out in [25]. For our application where PageRank scores are computed and
stored for snapshots of a large evolving Web graph, this forms a desired property from
the efficiency perspective.

4 Rank Synopses

Having discussed the normalization of PageRank scores, we now present rank synopses
as a technique to compactly represent and reconstruct historical PageRank scores. Let

G = 〈(V0, E0), . . . , (Vn, En)〉 (4)
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be an evolving graph represented as a sequence of graph snapshots Gi(Vi, Ei). For the
graph snapshot Gi(Vi, Ei) taken at time ti the set of vertices is denoted as Vi, and the
corresponding set of edges is denoted as Ei. Note that no assumption is made about
the frequency or regularity of observations. For each graph snapshot, one can compute
PageRank scores for all nodes in the graph. Modern web search engines typically re-
compute PageRank scores at periodic intervals to keep up with the evolution of the Web.
For a single page, its PageRank scores across the graph snapshots can be regarded as a
time series

〈(t0, r0), . . . , (tn, rn)〉 .

This time series is represented by means of a rank synopsis

Φ = 〈( [s0, e0] , Φ0), . . . , ( [sm, em] , Φm)〉 .

The rank synopsis is a piecewise approximation of the time series. The elements
( [si, ei] , Φi ) of Φ, which are referred to as segments in the remainder, contain a set
of parameters Φi representing the function that is used to approximate the time se-
ries within the time interval [si, ei]. The choice of parameters Φi depends only on the
observations in the time interval [si, ei], and we do not require functions in tempo-
rally adjacent segments to be contiguous. The segments cover the whole time period
spanned by the time series, i.e., s0 = t0 ∧ sm = tn ∧ ∀1≤i≤msi ≤ ei. Moreover,
time intervals of subsequent segments have overlapping right and left boundaries, i.e.,
∀1≤i<mei = si+1 .

The type of function used for the piecewise approximation is chosen a priori. This
choice affects the scalability of the method as we detail below (e.g., depending on
whether closed-form solutions of optimal parameters exist). For the scope of this work,
we consider the two types of functions:

Linear. The linear function, represented as Φlinear(t) = a0 + a1 t is frequently used
for piecewise representations of time series [23]. The main advantages of using this
representation is that linear segments can be fitted very efficiently and require only two
parameters to be stored.

Logistic. Generalized logistic functions (for brevity referred to as logistic functions in
the remainder) have the following form,

Φlogistic(t) = a0 +
a1

(
1 + a2 e−a3(t−a4)

)(1/a2)
.

Logistic functions were previously used, although not as a piecewise approximation,
in models of population growth, e.g., the so-called Verhulst model [27]. Recently, in the
context of web dynamics, Cho et al. [18] proposed a model of page popularity evolution
that is based on a logistic function. Since the PageRank score of a web page can be seen
as an estimate of its popularity [18], we hypothesize that logistic functions provide a
better approximation of the time series with significantly fewer segments (and therefore
less storage) than the linear approximation, despite the larger number of parameters that
need to be stored.
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4.1 Rank Synopses Construction

When constructing a rank synopsis, we aim at finding a rank synopsis having a small
number of segments while retaining a guarantee on the approximation error per ob-
servation. A tunable threshold θ defines an upper bound on the approximation error
per segment, which is defined as the maximal relative error made on any observation
covered by the segment, i.e.,

error(([si, ei], Φi)) = maxtj∈[si,ei] |1 − Φi(tj)
rj

| (5)

Rank synopses having a minimal number of segments while retaining this approxima-
tion guarantee are referred to as optimal in the remainder. Analogously, all other rank
synopses are referred to as approximate.

We now describe how optimal and approximate rank synopses can be efficiently con-
structed. Rank synopses construction closely resembles time-series segmentation and
histogram construction that are both well-studied problems. Therefore, for brevity, we
only outline construction algorithms here and refer to relevant related work for details.

Optimal rank synopses can be constructed using dynamic programming as described
for time-series segmentation [9,23,32]. Dynamic programming is applicable since every
subsequence of segments

〈([si, ei], Φi), . . . , ([sj , ej ], Φj)〉

must be optimal for observations 〈(tk, rk), . . . , (tl, rl)〉 (with tk = si and tl = ej),
which is an instance of the Bellman principle [9]. The time complexity of the algorithm
is in O(n3 Tfit) where Tfit denotes the time complexity for fitting parameters of the
employed function type per segment. For linear segments Tfit is in O(n) if closed-form
optimal parameters are computed per segment and can be reduced to O(1) by modest
precomputations. For logistic segments, which need to be fit by an iterative method,
Tfit is in O(n) in practice. The space complexity of the algorithm is in O(n2).

For the construction of approximate rank synopses we adopt a simple sliding window
algorithm [23] that we found to perform well in practice. The algorithm makes one
pass over the observations, fixes the left boundary of a segment, and places the right
boundary rightmost such that the guarantee on the approximation error is still retained.
Requiring only one pass over the data, the algorithm has time complexity in O(n Tfit)
and space complexity in O(n). Thus, the approximate rank synopses produced by the
sliding window algorithm retains our guarantee on the approximation error, but possibly
requires a slightly larger number of segments.

4.2 Reconstructing Historical PageRank Scores

The evolution of a web page’s PageRank score is compactly represented in a rank syn-
opsis. To implement the desired time-travel ranking-functionality, given a time t, we
need to reconstruct the web page’s historical PageRank score (as of time t) from its
rank synopsis. This reconstruction happens in two steps. In the first step, at most two
segments are selected from the rank synopsis. If t happens to be the boundary of two
adjacent segments, both these segments are selected. Otherwise, the one segment whose
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time interval [si, ei] contains t is selected. Let Φt denote the set of segments selected in
the first step, then the PageRank score r̂t as of time t is reconstructed in the second step
as

r̂t =
∑

( [si,ei] ,Φi)∈Φt

1
|Φt|

Φi(t) ,

Historical scores are thus reconstructed from the functions that were fitted to approx-
imate the observed scores. If two segments qualified in the first step, the mean of the
two computed scores is used.

4.3 Rank Synopses Maintenance

The rank synopses algorithms presented above assume that all rankings across time are
available at construction time. In practice, however, it is unrealistic to require that all
precomputed rankings are kept for each round of rank synopses computation. Ideally,
once rank synopses have been computed for a set of rankings, one requires that all rank-
ings that have been already covered by rank synopses are either discarded or accessed
infrequently. We now describe how to adapt the above algorithms to incrementally com-
pute rank synopses whenever new observations 〈(tn+1, rn+1), . . . , (tn′ , rn′)〉 become
available. Apart from the new rankings, we require only the last segment ([sm, em], Φm)
of the existing rank synopsis.

Given the last segment, the new observations are scanned in time order. For each new
observation, an approximation is computed using the parameters Φm of the last segment
to see if the approximation guarantee is retained. Let (ti, ri) be the first new observa-
tion for which the approximation guarantee is not retained, then the last segment of the
existing rank synopsis is set as ([sm, ti−1], Φm) – i.e., the segment is ended at the pre-
vious observation where it met the approximation guarantee. A new segment is opened
from (ti−1, ri−1), and for the remaining new observations 〈(ti, ri), . . . , (tn′ , rn′ )〉 the
algorithm as described above is applied to extend the existing rank synopsis.

4.4 Search Engine Integration

For rank synopses to be useful in practice, they must integrate smoothly into the query-
processing pipeline of a search engine. Although today’s search engines are not de-
signed specifically for time-travel searching, we assume a similar query-processing
strategy to be applicable. Brin and Page [17], in their original description of the Google
search engine, describe that PageRank scores are combined in a final step with ear-
lier computed IR scores reflecting query-specific relevance of web pages. Changing
the standard lookup of PageRank scores into an reconstruction of historical PageRank
scores as described in Section 4.2, rank synopses integrate seamlessly in this scheme of
query-processing pipeline.

5 Experimental Evaluation

We demonstrate the accuracy and storage efficiency of the proposed rank synopses us-
ing the following three datasets:
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– DBLP: Evolving citation graph derived from DBLP [3] restricted to the period
between years 1989 through 2000 and not containing nodes that have neither in-
coming nor outgoing edges.

– IA-UKGOV: Evolving web graph derived from monthly snapshots of
11.gov.uk web sites over two years. This dataset was obtained from the Eu-
ropean Archive [4] (available for online browsing at
http://www.europarchive.org/ukgov.php).

– Wikipedia: Evolving graph extracted from the full revision history of the English
Wikipedia [5] restricted to the period between years 2001 through 2005.

Table 1. Dataset Sizes and Characteristics

# Snapshots # Nodes # Edges Required Storage Kendall’s τ
Dataset μ σ

DBLP (yearly) 12 21,531 109,048 1.46 MBytes 0.90 0.02
IA-UKGOV (monthly) 24 560,496 4,913,060 30.65 MBytes 0.86 0.24
Wikipedia (monthly) 60 1,618,650 58,845,136 303.69 MBytes 0.85 0.06

Table 1 summarizes the sizes and characteristics of datasets we have used. The re-
ported number of nodes (edges) is the total number of nodes (edges) that ever existed
in the graph – for DBLP, where nodes (edges) are only added but never removed, this
corresponds to the numbers of nodes (edges) present in the final snapshot. PageRank
scores were computed on each snapshot (using ε = 0.15). The reported storage figures
refer to the storage that is required to keep the precomputed rankings, assuming that
one double-precision 8-byte value is needed per page per ranking. In order to quantify
how dynamic the datasets are, we compared rankings computed on each pair of tem-
porally adjacent snapshots. The mean μ and the standard deviation σ of the obtained
Kendall’s τ values are reported in the above table. As these figures show, DBLP is less
dynamic than IA-UKGOV and Wikipedia that have lower mean Kendall’s τ values. The
relatively high σ value observed for IA-UKGOV is the result of few bulk changes that
affect a large portion of the dataset.

A set of initial experiments revealed that optimal rank synopses are only marginally
better than approximate rank synopses. Therefore, results obtained using optimal rank
synopses are omitted here.

Implementation. All methods described in this paper were implemented using Java and
the statistical software package R [31]. In particular, the actual rank synopses construc-
tion algorithms are implemented in R which provides rich function-fitting functionality.
For logistic function fitting, R uses the restricted iterative Nelder-Mead optimization
method [28] whose complexity is in O(n) (although much slower than the O(n) fit-
ting of linear segments). All data was stored in an Oracle10g database, and experiments
were conducted on a SUN V40z with 4 AMD Opteron 2.66GHz CPUs, 16GB of RAM,
and a large disk-array.

Metrics. We use Kendall’s τ to compare the distance between two rankings. We used
the implementation provided by Boldi et al. [15] for computing the reported Kendall’s τ

.gov.uk
http://www.europarchive.org/ukgov.php
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values. Kendall’s τ values are in the range [−1, 1], with 1 (−1) indicating a perfect
agreement (disagreement) of the compared permutations.

5.1 Accuracy and Storage

We computed rank synopses for the following values of θ controlling the maximal ap-
proximation error per segment: 1%, 2.5%, 5%, 10%, 25%, and 50%. As a measure
of accuracy we report the mean Kendall’s τ between the original PageRank rankings
and the ranking that we reconstruct from our rank synopses. The required storage is
estimated assuming that linear and logistic segments require 2 and 5 double-precision
8-byte values, respectively. Storage costs for segment boundaries are ignored, since they
do not depend on the type of function used.

(a) DBLP (b) IA-UKGOV (c) Wikipedia

Fig. 2. Compression Ratio vs. Accuracy for Input Observations

In order to make results comparable across datasets, we plot compression ratios, i.e.,
ratios between the storage consumed by our rank synopses and the storage required by
the original rankings (as reported in Table 1), against the accuracy achieved.

Figure 2 plots the resulting accuracies and compression ratios obtained for increasing
values of θ. We observe that linear rank synopses consistently achieve higher compres-
sion than logistic rank synopses at the same level of accuracy. The gap between the
methods widens with increasing accuracy. On DBLP (IA-UKGOV) we observe high
accuracies above 0.88 (0.78). On the more dynamic Wikipedia, accuracies are strictly
above 0.52. Interestingly, logistic synopses fail to achieve a compression for small val-
ues θ on DBLP (see Fig. 2(a)) and Wikipedia (see Fig. 2(c)).

5.2 Reconstructing Non-input Observations

In the preceding experiment, only rankings were reconstructed that had been used as an
input when computing the rank synopses. The next experiment analyzes the accuracy
achieved by rank synopses when reconstructing a ranking that was not used as input.
To this end, we computed rank synopses using only every second precomputed ranking,
and compared reconstructed and original rankings for the left-out time points.

Figure 3 plots the resulting accuracies and compression ratios. It can be observed
that accuracies are slightly lower than the accuracies reported in the previous experi-
ment. On DBLP (see Fig. 3(a)) and Wikipedia (see Fig. 3(c)) we observe accuracies
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(a) DBLP (b) IA-UKGOV (c) Wikipedia

Fig. 3. Compression Ratio vs. Accuracy for Non-Input Observations

consistently above 0.85 (0.52). Logistic rank synopses achieve accuracies above 0.78
on IA-UKGOV (see Figure 3(b)), linear rank synopses, however, exhibit a sharp drop
for large values of θ.

5.3 Scalability

Finally, in a third experiment, we examined how the storage required by rank synopses
scales with the number of rankings that is used as an input. Figure 4 shows the growth
in storage in MBytes against the number of input rankings, for different values of θ for
both logistic and linear synopses.

For DBLP, linear synopses require consistently less storage than the original rank-
ings, and grow modestly – if we increase the number of rankings from 2 to 12, the
storage for linear synopses only doubles in contrast to an increase by more than 7 times
observed for the original rankings. Not surprisingly, logistic synopses show good stor-
age behavior only for larger threshold values (e.g., 5% and 25%) and larger numbers
of observations, as they require more storage per individual segment. For both logistic
and linear rank synopses, varying the threshold θ significantly affects the amount of
required storage.
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Results on IA-UKGOV (see Figure 4(b)) exhibit similar behavior: linear synopses
consistently perform better for the same value of θ. Varying the threshold θ, however,
has less impact on the amount of storage required than on DBLP.

For Wikipedia (see Figure 4(c)) the logistic rank synopses computed for θ = 1%
even fail to achieve a compression over the original rankings. All other rank synopses
require less storage than the original rankings with linear rank synopses again outper-
forming logistic rank synopses by a wide margin at the same value of θ.

5.4 Summing Up

In summary, our experiments demonstrate that rank synopses are an effective means to
compactly represent and reconstruct historical PageRank scores. Although logistic rank
synopses provide slightly better accuracy values overall than linear rank synopses, they
do so at a significantly higher storage and construction costs. Our initial hypothesis that
motivated the use of logistic segments could thus not be consistently verified.

Currently we are building a storage efficient and accurate time-travel search engine
for Web archives. As part of these efforts, we intend to focus on efficiently integrating
content-level relevance measures with rank synopses techniques presented in this paper.

6 Conclusions

In this work we have presented rank synopses as an efficient and accurate technique
to compactly represent and reconstruct historical PageRank scores. We demonstrated
the incomparability of PageRank scores across graphs and presented a new normaliza-
tion technique to overcome it. The presented techniques were experimentally evaluated
using three datasets of different sizes and characteristics. One promising direction of fu-
ture research is the extension of the presented techniques for the management of other
time-varying statistics (e.g., idf -scores) that are used in time-travel search.
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Abstract. Two equal-length integer-value strings jump-match if each
of their corresponding (locationwise) elements differ by the same value
d. In Jump matching one seeks all text substrings which jump-match the
pattern. Strings approximate jump-match if all elements differ by the
same value asides from at most k, where k is predefined. In approximate
jump-matching one seeks the text substrings which approximate jump-
match with the pattern.

We present innovative, efficient deterministic and randomized algo-
rithms to solve the approximate jump-matching problem.

1 Introduction

Numerical string pattern matching has lately garnered a lot of research-interest.
Several metrics have been considered, most notably the L1 metric [Ata01,
ALPU05, CCI05, ILLP04], Euclidean distance, the L∞ metric [ILLP04, LP05]
and in general the Lp metric. Other numerical string comparisons are less-than
matching [AF95], transposition invariant matching [LU00, MNU05], and self-
normalised distance [CC07].

In this paper we consider jump-matching, a.k.a. transposition matching.

Definition 1. Let S = s1, · · · , sm and R = r1, · · · , rm be two numerical strings
∈ N

m. We say that S and R jump-match if there exists d ∈ Z (the jump) s.t.
sj = rj + d , ∀1 ≤ j ≤ m.

The jump-matching problem is defined as follows.

Input: Pattern P = p1, ..., pm ∈ N
m and text T = t1, ..., tn ∈ N

n.
Output: All locations i of T , where P jump-matches Ti = ti, · · · , ti+m−1.

Jump-matching rises in various applications, such as music information retrieval
and image recognition. For example, in the latter, we seek a specific object in
an image. The way to solve this problem is by scanning the image top-down
and for each location in the image deciding if there is an appearance of the
object. Given a specific object to look for, it can appear in the new image in
different lighting conditions. Different lighting conditions can be interpreted as
addition/substraction of a fixed number in the gray level.

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 98–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Elephants with different gray-levels (with some mismatches)

Moreover, we will have noise in these images, where noise refers to mismatches
relating to the original image. The figures appearing in Figure 1 are taken from
the caltech dataset (http://www.vision.caltech.edu/html-files/archive.html) and
demonstrate (a) an image of elephant, and (b) the same image with constant
pixel difference of 20 gray-levels. Some pixels have additional noise.

The exact version of jump-matching was implicitly solved in [LU00] and we
mention there solution below. However, we are more interested in the approx-
imate version. For the approximate version the results in [MNU05] consider
various distance measures and propose solutions for them. However, we will be
interested in a formulation, which we believe is natural, that was not researched
there (in the pattern-matching sense). We propose two algorithms to solve these
problems, one deterministic and one randomized.

2 Jump-Matching

Let S = s1, s2, · · · , sn ∈ N
n. We define D(S), the difference string, to be s2 −

s1, s3 − s2, ..., sn − sn−1.
The difference string was introduced in [LU00] and the following is a simple

extension of their work.

Lemma 1. Let P ∈ N
m be a pattern and T ∈ N

n be a text. P jump-matches Ti

iff D(P ) appears at location i − 1 of D(T ).

Proof. Assume P jump-matches T at location i. By definition, there is a d ∈ Z

such that pj = ti + j − 1 for each 1 ≤ j ≤ m. Consider D(P ) and D(Ti),
and one position q, 1 ≤ q ≤ m of D(P ) and D(Ti). At this position D(P )q =
pq+1 − pq and D(Ti)q = ti+q − ti+q−1. However, we know that d = pq+1 − ti+q

and d = pq − ti+q−1 and hence, pq+1 − ti+q = pq − ti+q−1 which implies that
pq+1 − pq = ti+q − ti+q−1. Therefore, D(P )q = D(Ti)q and since the same holds
at all positions, D(P ) = D(Ti). Lastly, note that D(Ti) is a substring of D(T )
at location i − 1.
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Conversely, if P does not jump-match Ti then there must be a location q for
which there is a difference d, where location q + 1 has difference �= d, or vice
versa. By similar arguments D(P )q �= D(Ti)q and, hence, D(P ) �= D(Ti) and,
therefore, D(P ) does not match at location i − 1 of T . ��
It follows from the Lemma that one can solve jump-matching in O(n + m) time
by applying D() to both P and T and using an arbitrary linear-time pattern
matching algorithm.

3 Approximate Jump-Matching

While jump-matching is easy to solve efficiently, applications such as object
recognition render it essential to consider jump-matching with errors. This re-
quires clarification. Consider two strings S = s1, · · · , sm ∈ N

m and R =
r1, · · · , rm ∈ N

m that jump-match. These jump-match with a single unique
jump d for every position. Now consider S and R that do not jump-match.
That means that for every possible d ∈ Z there exists at least one position j
such that sj �= rj + d. We call such positions j, d-errors. For each d ∈ Z we may
have a different number of d-errors. Let d0 ∈ Z be the jump d which obtains the
minimum number, say k, of d-errors. We say that S and R jump-match with k
errors and we refer to the d0-errors simply as errors.

The Approximate Jump-Matching problem is defined as follows:

Input: Pattern P = p1, ..., pm ∈ N
m and text T = t1, ..., tn ∈ N

n and integer k.
Output: All locations i of T , where P and Ti = ti, · · · , ti+m−1 jump-match with
at most k errors.

The naive way of solving the Approximate Jump-Matching problem is to eval-
uate, for each location i of T , all differences dj = ti+j−1 − pj over positions
1 ≤ j ≤ m and to choose d which appears at most positions. We then verify if
d appears in at least m − k positions. This takes O(nm log m) time. Our goal is
to derive better algorithms.

Unfortunately, it does not seem that there is a claim that we can make sim-
ilar to Lemma 1 for the jump-matching problem. However, we can claim the
following:

Lemma 2. Let P ∈ N
m be a pattern and T ∈ N

n be a text and k ∈ N s.t.
k < m. If P jump-matches Ti with at most k errors then D(P ) appears with at
most 2k mismatches at location i − 1 of D(T ).

Proof. We omit the proof here and point out that it follows arguments similar
to those in the proof of Lemma 1. ��

Example 1.
T :
P :
D(T ):
D(P ):

2

4

6

8

14
16
9
9

23
25
−15
−20

8
5
−3
−2

5
7
69
69

74
76
−71
−71

3
5
94

97

−55

42
d=2



Jump-Matching with Errors 101

Let S and R ∈ N
m. We define a partition on 1, · · · , m, based on S and R, as

follows. An interval [i, j] is said to be a block if there exists d such that for all
i ≤ l ≤ j, sl − rl = d, but si−1 − ri−1 �= d and sj+1 − rj+1 �= d. A block-partition
is a partition of 1, · · · , m into blocks. The following observation can be shown to
be true relatively straightforwardly.

Observation 1. Assume that the block-partition of S and R ∈ N
m has x blocks.

Then
1. There are exactly x − 1 mismatches between D(S) and D(R),
2. Contiguous blocks have different jumps,
3. Non-contiguous blocks may have the same jumps.

This leads to a useful fact.

Corollary 1. Let S and R ∈ N
m. If their block partition contains 2k + 2, or

more, blocks then S and R do not jump-match with k errors.

Proof. Say, by contradiction that S and R jump-match with jump d. By Obser-
vation 1, contiguous blocks have different jumps. Since there are at least 2k + 2
blocks, at least k + 1 blocks have a non-d jump and hence at least k + 1 errors,
a contradiction. ��
Note that while Lemma 2 states that there are at most 2k mismatches for k
errors, it follows from Observation 1 that if there are only 2 blocks there will be
only be 1 mismatch while there may be many errors.

3.1 Deterministic Algorithm

We base our algorithm on the block partition. Our method utilizes the ”kanga-
roo” approach [GG86, LV85]. The problem solved is that of pattern matching
with k mismatches. The kangaroo approach uses a suffix tree and compares
strings by using LCA (longest common ancestor) information. Specifically, they
check at each text location i whether P matches Ti with k mismatches as follows.
The idea is to find the first mismatch between P and Ti by finding the longest
common prefix (LCP) of P and Ti. The LCP is found by an LCA query in the
suffix tree between nodes representing P and Ti (both appear in the suffix tree).
Their LCA corresponds to their LCP. The LCP ends either at the end of the
string or at the first error. This comparison, which can be done in O(1) time,
is called a kangaroo hop. If we meet an error, say at position q, we skip over it
and do another kangaroo hop from the suffix q + 1 of P and suffix i + q − 1 of
T , (both are represented in the suffix tree). We keep on kangaroo-hopping until
we discover k + 1 errors or hit the end of the string. When we use this method
we say that we are kangarooing.

Using the kangaroo method we can find a partition of x blocks in time of
O(|x|). In our case we will never do more than 2k + 2 kangaroo hops because
Corollary 1 renders this useless, as there cannot be a jump match with at most
k errors at this location.

The high-level description of the text searching algorithm appears below.
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Algorithm 1. Approximate Jump-Matching (Deterministic Algorithm)
for every text location i do1

Establish the block-partition and number of blocks, x (Kangaroo method);2

If x > 2k + 1 then quit – no match occurrence possible at i;3

for j = 1 to x do4

compute dj , the jump for block j, Bj ;5

lj ← |Bj |, the number of elements in block Bj ;6

save the pair 〈dj , lj〉;7

sort the 〈dj , lj〉 pairs, according to their dj value;8

sum the lj ’s for each d over all pairs 〈dj , lj〉 for which d = dj ;9

let d be the jump with maximal sum, l;10

if l ≥ m − k then11

announce ”there is a k-error match with jump d”;12

else13

announce ”there is no match”;14

Running time: The running time of our algorithm is as follows. In order to use
the kangaroo method there is initial preprocessing of a suffix tree for D(T )
and D(P ), along with LCA information, which takes O(n + m) time. In the
algorithmic process, each location is analyzed separately. The kangaroo method
(line 2) costs O(k) time to identify the blocks (if there are more than 2k+1 blocks
we stop ”kangarooing” since we will quit in line 3 anyway). In the 4-7 loop dj

can be computed from evaluating one position in the block and lj is immediately
available from the kangaroo method. Hence, the loop takes O(|x|) = O(k) time.
Step 8 takes O(k log k) time, step 9 and 10 takes O(k) time and the rest O(1).
Hence, the overall running time for Algorithm 1 is O(nk log k).

Correctness: Since we compute each text location separately, it is sufficient to
be sure that the computation is correct at that text location. We first establish
the block partition. Line 3 uses Corollary 1 to bound the block partition size we
need to consider. From there on the algorithm simply computes brute force the
dominating jump.

4 Randomized Algorithm

To get better results we generalize the idea of the difference string that we con-
sidered in the previous section. The difference string was defined for differences
between each position and the previous position. The key observation in jump-
matching was that two contiguous positions (in S and R) have the same jump iff
the difference between their values is the same in S and R. However, there is no
reason to consider only contiguous positions. In fact one may consider arbitrary
permutations π on the position set. Formally,

Definition 2. Let S = s1, ..., sm ∈ N
m and π = (π1, ..., πm) be a permutation of

the vector (1, ..., m). We say that the difference string according to π is Dπ(S) =
sπ1 − s1, sπ2 − s2, · · · , sπm − sm.
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We now show that similar properties hold for the difference string under π.

Lemma 3. Let S, R ∈ N
m and let π be a permutation. Let 1 ≤ q ≤ m be a

position. Let d = sq − rq and let d′ = sπ(q) − rπ(q). Then d �= d′ iff Dπ(S)q �=
Dπ(R)q.

Proof. By definition, Dπ(S)q = sπq −sq and Dπ(R)q = rπq −rq. Since d = sq−rq

and d′ = sπ(q) − rπ(q) it follows that d = d′ iff sπq − rπq = sq − rq which happens
iff sπq − sq = rπq − rq which is equivalent to Dπ(S)q = Dπ(R)q. ��
We can deduce the following.

Corollary 2. Let S, R∈N
m. If S jump-matches R with l errors then Ham(Dπ(S),

Dπ(R)) ≤ 2l.

Consider P and Ti that jump-match with l errors. If l ≤ k then by Corollary 2
we are guaranteed that Ham(Dπ(P ), Dπ(Ti)) ≤ 2k for any permutation π. On
the other hand, if l > k then perhaps we could come up with a permutation π for
which Ham(Dπ(P ), Dπ(Ti)) > 2k. This would enable us to use a k-mismatches
(or better said, 2k-mismatches) algorithm on the Dπ’s to check whether l ≤ k
or not, which would solve the approximate jump-matching problem. Of course,
it may be that it is hard to find such π that forces Ham(Dπ(P ), Dπ(Ti)) > 2k,
as we mentioned with the block partitions. Moreover, even if for permutation
π we have Ham(Dπ(P ), Dπ(Ti)) > 2k it may be that for a different location
j, Ham(Dπ(P ), Dπ(Tj)) ≤ 2k even if P and Tj jump-match with more than k
errors. This leads us to the concept of families of permutations. To formalize
this we give some necessary definitions. To simplify, we say that S and R do not
k-jump-match if S and R jump-match with l errors where l > k.

Definition 3. Let S, R ∈ N
m s.t. S and R do not k-jump-match. Let π =

(π1, ..., πm) be a permutation of the vector (1, ..., m). We say that π is k-tight
for S and R if Ham(Dπ(S), Dπ(R)) > 2k.

Definition 4. Let F
k
m be a family of permutations on {1, · · · , m}. We say that

F
k
m is ρ-k-tight if:

ρ ≤ minS and R∈Nm do not k−jump−match
|{π ∈ F

k
m | π is k − tight for S and R}|

|Fk
m|

Finding such permutation families will be instrumental for our algorithm. Specif-
ically, notice that the definition of ρ is over all S and R (that do not k-jump-
match). Hence, if such a family exists with, say, a constant ρ then at every text
location there exist at least a constant fraction of the permutations which are
k-tight for P and Ti. Hence, if we choose a random permutation from the fam-
ily then at any given text location it is likely to hit a k-tight permutation for
P and Ti. In fact, without proof we claim that the family of all permutations
will be a ρ-k-tight family for any constant ρ. However, the family must also be
efficiently computable. One such family is the following, which we will show (1)
to be ρ-k-tight for a constant ρ and (2) will be efficiently computable.
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Let πi be the shift permutation, (i + 1, i + 2, · · · , m, 1, · · · , i). Note that D(S)
is exactly Dπ1(S) besides for the last location. Let Fshift = {πi | 1 ≤ i ≤ m − 1}
be the family of all shift permutations. We can claim the following:

Theorem 1. If m > 6k2 then Fshift is a 1
(4+ε) − k-tight family, for any ε.

Proof. Let S, R ∈ N
m such that S and R do not k-jump-match. We will show

that 1
(4+ε) ≤ |{π∈Fshift | π is k−tight for S and R}|

|Fshift| . Say S and R jump-match with
l errors. Obviously l > k. We will consider three cases, k < l ≤ 2k, 2k < l ≤ m

4
and l > m

4 .

Case k < l ≤ 2k: Let d be the dominant jump in the jump-match with l errors
of S and R. That is, there are exactly m−l ≥ m−2k positions where sj = rj +d.
We say that a position q is a d′-position if d′ = rq − sq. If d′ �= d we say that the
position is a non-d-position. For permutation π we say that position q is mapped
to q′ = π(q) (by π).

For each πi ∈ Fshift, q is mapped to a unique q′. Let q be a non-d-position.
q will be mapped to a different non-d-position q′ in exactly l − 1 permutations.
The same is true for each non-d-location q. Hence, in all but, at most, (l − 1)l
permutations of Fshift every non-d-position is mapped to a d-position. Hence, in,
at least, m−(l−1)l permutations all non-d-positions map to d-positions and the
position mapped to the non-d-positions are also d-positions. Hence, by Lemma 3
for all these m − (l − 1)l permutations πi , Dπi(S) and Dπi(R) mismatch with
2l > 2k mismatches. Since, l ≤ 2k, (l − 1)l < 4k2. Since m ≥ 6k2 the ratio
of k-tight permutations for S and R out of all Fshift permutations is at least
6k2−4k2

6k2 = 1
3 > 1

4+ε .

Case m
4 < l: Let d be the dominant jump in the jump-match with l errors of

S and R. Since l > m
4 the number of d-positions is < 3

4m. As d is dominant
the number of d′-positions, for any d′, is < 3

4m. Hence, for any position, say
a d′-position, there are at least m

4 positions which are non-d′-positions. So, for
every position q, say a d′-position, there are at least m

4 mappings from q to
a non-d′-position q′ = πi(q) (for some i), for an overall m2

4 mappings. Hence,
by Lemma 3 there are m2

4 mismatches between Dπi(S) and Dπi(R) over all
permutations πi ∈ Fshift. Since for each permutation which is not k-tight, by
definition, Ham(Dπi(S), Dπi(R)) ≤ 2k it follows that there are at least m2

4 −m2k

mappings in k-tight permutations. However, m > 6k2 so
√

m
6 > k and hence

at least m2

4 − 2m
√

m
6 > m2

4 − m
√

m > m2

(4+ε) for any ε and large enough m.
Since, each k-tight permutation can have at most m mappings, there are at least

m2
(4+ε)

m = m
(4+ε) k-tight permutations.

Case 2k < l ≤ m
4 : Since l ≤ m

4 it must be that the number of positions with
dominant d is at least 3

4m. Now, choose (an arbitrary) 2k positions from the
l error positions and consider the set of mappings M between d-positions and
these 2k positions. There are overall, at least, 3

4m∗2k ∗2 = 3mk such mappings.
By Lemma 3 each mapping contributes a mismatch between Dπi(S) and Dπi(R)
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for some i. However, for any πi which is not k-tight by definition, Dπi(S) and
Dπi(R) can have at most 2k mismatches for at most 2mk over all permutations
which are not k-tight. Hence, there are, at least, 3mk − 2mk = mk mappings
from permutations which are k-tight. Yet, since there are only 2k chosen non-d-
positions, there can be at most 4k mappings for each permutation. Hence, there
are at least mk

4k = m
4 permutation which are k-tight. ��

The idea is to use the family of permutations Fshift to chose a random permutation
π ∈ Fshift and to evaluate every m-length substring Ti with P . For the analysis,
we will be able to use Theorem 1 to obtain a sufficient probability of it being a
k-tight permutation. However, the challenge is to compute the number of mis-
matches between the pattern’s difference string and the difference string for each
Ti. In the deterministic algorithm the difference string of each Ti was a substring
of the difference string of T . Hence, we could compute the difference string for T
and it was sufficient. Here the difference string is not even defined for T . Moreover,
for πj and a given text location it is defined differently according to the location
of the pattern. Nevertheless, there is a nice feature of the Fshift family that will
allow us to compute as desired. Consider permutation πj . Split the patterns into
two pattern P 1 = p1, p2, · · · , pm−j and P 2 = pm−j+1, · · · , pm. Note that in the
difference string Dπj(P ) the first m−j positions are difference between j-distance
positions, whereas the last j are distance m − j positions. Hence, by splitting P
into P 1 and P 2 we can form appropriate T 1 and T 2 in which to compute the num-
ber of errors. We can then use any algorithms for 2k mismatches that returns the
number of errors at each location. The, currently, fastest such algorithm is that of
Amir et.al. [ALP04] that runs in time O(min(n

√
k log k, nk3

m log m)). We denote
this algorithm as ALP (k). The algorithm follows.

Algorithm 2. Approximate Jump-Matching (Randomized Algorithm)
for j=1 to 8log m do1

Let Fshift = {πi | 1 ≤ i ≤ m − 1} be the family of all shift permutations;2

Choose a random 1 ≤ i ≤ m − 1 (with shift permutation πi);3

Set P 1 = p1, p2, · · · , pm−i and P 2 = pm−i+1, · · · , pm;4

Set D1(P 1) = pi+1 − p1, · · · , pm − pm−i and D1(T ) = ti+1 − t1, · · · , tn − tn−i;5

Run ALP(k) with D1(P 1) and D1(T ); store output in Q1,j [1, · · · , n−m+1];6

Set D2(P 2) = p1 − pm−i+1, · · · , pi − pm and7

D2(T ) = t1 − tm−i+1, · · · , tn−m+i − tn;
Run ALP(k) with D2(P 2) and D2(T ); store output in Q2,j [1, · · · , n−m+1];8

for i = 1 to n-m+1 do9

NoMatch = False;10

for j=1 to 8log m do11

Q[i] = Q1,j [i] + Q2,j [i];12

if Q[i] > 2k then13

announce ”there is no k-error jump-match at location l”;14

NoMatch = True;15

if NoMatch = False then16

announce ”there is a k-error jump-match at location l”;17
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Theorem 2. The output of algorithm 2 is correct with probability 1 − 1
n .

Proof. Let i be a text location such that P and Ti jump-match with l er-
rors, where l > k. In each round we choose a πj and can bound the error-
probability as follows: Prob((Ham(Dπj (P ), Dπj (Ti)) ≤ 2k) < 1 − 1

(4+ε) <
4
5 ). Since (4

5 )4 < 1
2 it follows that for 8 logn random choices of permutations

Prob((Ham(Dπj (P ), Dπj (Ti)) ≤ 2k) < (4
5 )8 log n < (1

2 )2 log n = 1
n2 . Hence, over

all locations j which jump-match with more than k errors we have probability
< 1

n of not receiving Ham(Dπj(P ), Dπj (Ti)) > 2k in one of the rounds. ��

Time Analysis: The running time is O(n
√

k log k log n) by O(log n) applica-
tions of the ALP algorithm [ALP04].
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Abstract. We study the problem of predicting the popularity of items
in a dynamic environment in which authors post continuously new items
and provide feedback on existing items. This problem can be applied to
predict popularity of blog posts, rank photographs in a photo-sharing
system, or predict the citations of a scientific article using author infor-
mation and monitoring the items of interest for a short period of time
after their creation. As a case study, we show how to estimate the number
of citations for an academic paper using information about past articles
written by the same author(s) of the paper. If we use only the citation
information over a short period of time, we obtain a predicted value that
has a correlation of r = 0.57 with the actual value. This is our baseline
prediction. Our best-performing system can improve that prediction by
adding features extracted from the past publishing history of its authors,
increasing the correlation between the actual and the predicted values
to r = 0.81.

1 Introduction

Editors in publishing houses (as well as producers for record labels and other
industries) face often the following problem: given a work, or a promise of a
work, what is a good method to predict if this work is going to be successful?
Answering this question can be very useful in order to decide, for instance,
whether to buy the rights over the work, or to pay in advance to the authors.
The editor’s prediction on the success of the work can, in principle, depend on
the past publishing history or credentials of the author, and on the estimated
quality of the item that is being examined. Of course, the estimation can be
quite inaccurate, as the actual success of an item depends on many elements,
including complex interactions among its audience plus external factors that
cannot be determined in advance.

We are interested in the problem of estimating the success of a given item,
understood as the impact of the item in its community. In the case of books, for
instance, success can be measured in terms of book sales. In the case of scholarly
articles, success is typically measured as a function of the number of citations
an article receives over time.

In this work, we deal with the citation prediction task in the context of a large
set of academic articles. Our main questions are:

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 107–117, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– Can we characterize the evolution of the citations of a paper over time?
– Can we predict the number of citations of a paper, given information about

its authors?
– Can we improve such a prediction, if we know the number of citations a

paper has received over a short timespan?

The method we describe in this paper receives as input an article and the past
publication history of the authors of that article. The output is an estimation
of how many citations the article will accumulate over its first few years. Such
prediction can be further improved over time as the system receives information
about how many citations the article received over the first few months after its
publication.

The next section relates our work with previous papers on this problem. In
Section 3 we describe the dataset we are using, in Section 4 we describe the
features we extract for the prediction task, and in Section 5 we discuss the
experimental results we obtained. The last section outlines our main conclusions
and describes future work.

2 Related Work

The 2003 KDD Cup [7] included a citation prediction task resembling the one
we undertake on this paper. The citation prediction task included estimating
the change in the number of citations of papers between two different periods of
time. Participants received data about the citation graphs and the contents of
a set of about 30,000 papers from the e-print arXiv.1 The training data covered
a 3-months period (February to April 2003) and the testing data was the next
3-months period (May to July 2003). In contrast, in the current work we do
not use content attributes from the papers and the time period covered by the
prediction task is in the order of years, not months.

The problem of predicting the ranking of scientists was studied recently by
Feitelson and Yovel [5]. They show that a multiplicative process gives a good
approximation of the number of citations that authors in a certain position in
the ranking receive. In their paper, Feitelson and Yovel want to estimate the rank
of each author in the list ordered by citations, not the citation counts. The main
idea is that authors will move up in the rank until the rate of change of their
citations is equal to the rate of change of the citations of the authors in similar
positions in the ranking. In contrast, in our work we focus on the number of
citations of particular papers (not authors), and mostly in the absolute number
of citations, not on the ranking.

Popescul and Ungar [14] use machine learning to try to predict specific ci-
tations among papers (e.g., if paper p1 is going to cite paper p2 or not), using
features such as the authors, citation information, and the venues where papers
appear. A related problem, predicting co-authorship relationships between au-
thors, is studied by Liben-Nowell and Kleinberg [11]. In our paper, we estimate
aggregate counts in the citation network, not specific links.
1 http://arxiv.org/
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The Web has provided an enormous amount of data about dynamic networks,
including general Web pages, blogs, Wikis, and other information systems. In
general the dynamics of blogs [1,9,12], Wikipedia [3], authorship networks [11]
and other networks [10] have attracted considerable attention in the last years. In
the specific case of blogs, Fujimura et al. [6] observe that the number of in-links
to individual blog entries is quite small in general, and a certain amount time
from the moment of the creation of each blog is needed to acquire those in-links.
To overcome these problems and be able to rank blog postings, they propose
the EigenRumor algorithm, in which a variation of the hubs and authorities
algorithms [8] is applied to authors and blog postings. In the case of Web links,
Baeza et al. [2] observed that PageRank is biased towards older pages (since they
have had more time to accumulate citations. Cho et al. [4] propose to reduce this
bias by considering a different quality metric: a weighted sum of the derivative
of PageRank over time and the actual PageRank value.

Recent results on predicting popularity in social networks point out that when
users influence each other, the ranking of items may be less predictable than
when they judge independently. Salganik et al. [15] experiment with an artificial
cultural market showing that, while high-quality items rarely have low rankings
and low-quality items rarely have high rankings, basically any ranking outcome
is possible.

3 Dataset

CiteSeer2 is a dataset of academic papers, with many facilities for searching and
exploring the dataset. It has been in operation since 1997 and currently indexes
over 750,000 bibliographic records. CiteSeer data is available through an Open
Archives Initiative (OAI) interface that allows users to download records from
the dataset. The set of records we used covers 581,866 papers published from
1995 to 2003, including both years.

Given that we are interested in creating a model for the authors, we kept only
papers for which at least 1 of the authors had 3 papers or more in the dataset.
In this way, we obtained 519,542 papers, which is about 89% of the original set.
The large temporal window available allow us to use part of the data available to
build the reputation of each author. In particular, we select 1,500 papers written
during 4 months in 1999 (i.e., right in the center of the temporal window) and
use all the past data (papers, authors and citations) to extract the features
related to the authors of each paper at the moment of its publication. We use
the remaining 4.5 years in the future to monitor the popularity growth and to
test our predictions.

Next we looked at the number of citations that papers received. We focused
on two particular moments in time: first, 6 months after the publication of each
paper. On average, papers in our dataset had 2 citations at that time. Second,
we looked at 30 months (4.5 years) after publication. On average, papers in our

2 http://citeseer.ist.psu.edu/
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Fig. 1. Average profile of the number
of citations over time in the citeseer
dataset, taking as reference (=1.00) the
events on the first 4.5 years. Error bars
represent one standard deviation.
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one standard deviation. Std/avg ranges
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dataset had 5.9 citations at that time. Fig. 1 summarizes the fraction of citations
that papers receive between 6 months and 30 months. Overall, papers seem to
accumulate citations steadily over their first few years. On average, a paper in
our dataset receives roughly half of its citations on the first 6 months, and 57%
of them on the first year. However, the variance on these statistics is very large.
The error bars in the figure represent one standard deviation, and show that
different papers accumulate citations following very different profiles.

The number of citations after 6 months and the number of citations after 30
months are correlated, and the correlation coefficient is about 0.57. This means
that on average a paper that receives many citations shortly after it is published,
will receive many citations over the following years. In Fig. 2, we plot the number
of citations after 6 months and the average number of citations after 30 months,
including error bars. We can see that the correlation is not strong enough to make
an accurate prediction. For instance, for papers with 10 citations in the first 6
months, one standard deviation means somewhere between 10 to 60 citations
over 4.5 years, which is a rather large interval. Not surprisingly, the correlation
improves as more data points are included, as we show later in Table 1. However,
the goal of our task is to be able to estimate the number of citations of a paper
shortly after it is published.

One remark about quality and citations is in order. The number of citations
is not a perfect metric for the quality of a paper. The reasons behind the impact
of a paper can vary, and it is not always true that quality is the key factor for
the number of citations of a paper. Moreover, it is difficult to define an objective
measure of quality itself. It is evident that surveys, methodological papers, or
just papers addressing “hot topics”, or in fields shared by large communities,
are more likely to be read and cited than other papers, all other things being
equal.
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4 Features

Notation. We consider a graph G = (Va ∪ Vp, Ea ∪ Ec) that summarizes all
the authorship and citation information available. The vertices of this graph are
composed by the set Va, which represents the authors, and the set Vp, which
represents the papers. The set of edges include Ea ⊆ Va × Vp, that captures the
authoring relationship, so that (a, p) ∈ Ea if author a has co-authored paper p.
A paper can have more than one author and we denote by kp � | {a|(a, p) ∈ Ea} |
the number of authors of a paper. The edges in graph G also include Ec ⊆ Vp×Vp,
that captures the citation relationship, so that (p1, p2) ∈ Ec if paper p1 cites
paper p2.

In any bibliography dataset, authors have a double role: from one side, they
deliver original content and produce new items, from the other side, they provide
an implicit evaluation of other authors. The two types of edges in Ea and Ec

capture the authoring and citation relationships respectively. These are denoted
in the framework of Fujimura and Tanimoto [6] information provisioning and
information evaluation, respectively.

Each paper p ∈ Vp has also a timestamp associated to its creation: time(p).
It is assumed that all citations go from a more recent paper to an older paper.
In the graph G, we define the number of citations of a paper at time t, Ct(p) as:

Ct(p) = | {p′|(p′, p) ∈ Ec ∧ time(p′) < t} |

that is, Ct(p) is the number of papers citing p that were published in the first
t units of time after p. We then extend this notation by defining the number of
citations of an author a before time t as:

Ct(a) = | {p′|(p′, p) ∈ Ec ∧ (a, p) ∈ Ea ∧ time(p′) < t} | .

We are interested in determining whether the number of citations of a paper
after a long time period, can be approximated by a function of some a priori
features related to the authors of the paper, and/or to the number of citations
of the paper after a shorter time period. More specifically, we use three differ-
ent types of features: (1) a priori author-based features, (2) a priori link-based
features, and (3) a posteriori features.

A priori author-based features try to capture how well previous papers from
the same authors have performed in the past. At time t, the past publication
history of a given author a can be expressed in terms of:

(i) Total number of citations received Ct(a): the global number of citations
received by the author i from all the papers published before time t.
(ii) Total number of papers (co)authored Mt(a): the total number of papers
published by the author a before time t

Mt(a) = | {p|(a, p) ∈ Ea ∧ time(p) < t} |.

(iii) Total number of coauthors At(a): for papers published before time t

At(a) = | {a′|(a′, p) ∈ Ea ∧ (a, p) ∈ Ea ∧ time(p) < t ∧ a′ �= a} |
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Given that one paper can have multiple authors, we aggregate the values
that capture the history of each of those authors. For aggregating the values of
individual authors we use max, sum, and avg operators — a detailed description
of the aggregation process is given in Appendix A. In total we obtain 12 a priori
author-based features.

A priori link-based features try to capture the intuition that good authors
are probably aware of the best previous articles written in a certain field, and
hence they tend to cite the most relevant of them. Mutual reinforcement char-
acterizes the relation between citing and cited papers; and this relationship also
translates to an implied relationship among citing and cited authors. The in-
tuition is that authors cited by good authors should have a higher probability
to be cited, and also that good authors usually cite significant papers. This
type of implicit endorsement provided by links is the basis of link-based ranking
algorithms like PageRank [13] and HITS [8].

If two papers p1 and p2 written by different authors a1 and a2 respectively
cite each other; that is, (a1, p1) ∈ Ea, (a2, p2) ∈ Ea and (p1, p2) ∈ Ec; we can
infer an implicit relationship between authors a1 and a2. In the EigenRumor
algorithm introduced by Fujimura and Tanimoto [6], the relationships implied by
both provisioning and evaluation of information are used to address the problem
of correctly ranking items produced by sources that have been proved to be
authoritative, even if the items themselves have not still collected a high number
of inlinks.

The exact implementation of EigenRumor we use is explained in the Appen-
dix. Basically, we compute 7 EigenRumor-based features related to the hub and
authority score of the authors of each paper p.

A posteriori features simply monitor the evolution of the number of citations
of a paper at the end of a few time intervals that are much shorter than the target
time for the observation. We consider the number of citations that each paper
receives in the first 6 months and in the first 12 months after its publication.

5 Experimental Results

Our goal is to produce an approximation of the number of citations of a paper p
at time T , ĈT (p) ≈ CT (p) using all the information available for items created
before time T ′ < T . A first metric for the quality of such approximation is the
correlation coefficient between the variables ĈT (p) and CT (p).

The correlation coefficient weights papers equally independent on their num-
ber of citations. This may be a disadvantage as there are some applications (such
as search engines) in which it is more important to produce an accurate predic-
tion for highly-cited papers than for the rest. For this reason, we also consider
the following metric: we say that a paper is successful if it is among the top 10%
of the papers published at the same time t (remember that t represents actually
a certain period of time, e.g. one month). Next we evaluate ĈT (p) by measuring
how accurately it can predict the “success” of a paper. Given a classification
algorithm C, we consider its confusion matrix:
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Prediction
Unsucceful Successful

True Label Unsuccessful a b
Successful c d

where a represents the number of unsuccessful papers that were correctly classi-
fied, b represents the number of successful papers that were falsely classified as
unsuccessful, c represents the successful papers that were falsely classified as un-
successful, and d represents the number of successful papers that were correctly
classified. For the evaluation, we use the F-measure, defined as 2×precision×recall

precision+recall ,
where recall is d

c+d and precision is d
b+d .

We used the freely-available machine-learning package Weka [16]. In particular
we used the Weka implementation of linear regression (for prediction of the
number of citations) and C4.5 decision trees (for the prediction of success). In
the case of decision trees, we applied an asymmetrical cost matrix to increase
the recall, by making a misclassification of successful as unsuccessful 1.5 times
more costly than a misclassification of unsuccessful as successful.

Tables 1 and 2 show the experimental results obtained over the 1,500 papers
extracted as described in Section 3. The r and F values reported in this section
are the average after 10-fold cross validation (in which 9/10 of the data are used
to learn a model which is then tested in the remaining 1/10 of the data).

From Table 2 we can observe that by using a priori author information we
obtains a clear improvement in the prediction, given that the correlation coeffi-
cient r of the predicted value goes from 0.57 to 0.81 in the prediction that uses
the first 6 months of citations.

In the task of predicting success using 6 months of a posteriori data, the F -
Measure increases significantly, from 0.15 to 0.55. The value F is a bit hard to
interpret, but in this case, an F value of 0.55 reflects that about 57% of the
top-10% papers are detected, with about 5% false positives. Remember that we
are predicting the impact of a paper after 30 months using 6 months of data.

Table 1. Experimental results, using only a posteriori citation information. r is the
correlation of the predicted value with the number of citations after 4.5 years. F is the
F-Measure in the task of predicting “success” (defined as being in top 10% in citations).

A posteriori Predicting Citations Predicting Success
citations r F

6 months 0.57 0.15
1.0 year 0.76 0.54
1.5 years 0.87 0.63
2.0 years 0.92 0.71
2.5 years 0.95 0.76
3.0 years 0.97 0.86
3.5 years 0.99 0.91
4.0 years 0.99 0.95
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Table 2. Experimental results, using a priori and a posteriori features

A posteriori features
A priori First 6 months First 12 months
features r F r F

None 0.57 0.15 0.76 0.54

Author-based 0.78 0.47 0.84 0.54

Hubs/Auth 0.69 0.39 0.80 0.54
Host 0.62 0.46 0.77 0.57

EigenRumor 0.74 0.55 0.83 0.64
ALL 0.81 0.55 0.86 0.62

6 Conclusions and Future Work

Our main conclusion is that, in the context of academic papers, information
about the authors of a paper may help in predicting the number of citations it
will receive in the future, even if we do not take into account other factors such
as, for instance, the venue where the paper was published.

In the course of our experiments, we observed that a priori information about
authors degrades quickly. When the features describing the reputation of an
author are calculated at a certain time, and re-used without taking into account
the last papers the author has published, the predictions tend to be much less
accurate.

Whether is it possible to obtain similar results to other communities is left
as future work. We have attempted the same prediction task over data from
Flickr.3 In Flickr, each “author” is a photographer, each “paper” is a photog-
raphy, and “citations” are votes and/or comments a photographer places over
somebody else’s photography. This allows us to define information provisioning
and information evaluation matrices similar to the ones we use for calculating
the attributes we use in this prediction task.

We have used the same algorithms described in this paper, but so far we
have not been able to improve the quality of a baseline prediction (using only a
posteriori information) using a priori attributes. Of course, in Flickr the data is
much more noisy and sparse, posting a photo is easier than publishing a paper,
and in general the dynamics may be different from the dataset we have studied
on this article. However, one objective of our research is to devise algorithms for
predicting the popularity of items in web communities, and we turn our future
work there.
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Appendix A

For repeatability of our experiments, we include here the specific list of features
we used for the prediction task.

A priori author-based features. Remembering that kp is the total number
of the authors of the paper p, let t = time(p), Ct(a), Mt(a), At(a) the global
number of citations, papers and coauthors of the author a at time t.

We computed for each paper p the following features at time t :
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– Features based on the number of citations Ct(a)
1. Sum of all citations collected by all the authors:

∑kp

a Ct(a)

2. Average citations per author:
�kp

a Ct(a)
kp

3. Maximum number of citations: maxa Ct(a)
4. Sum of all citations collected by all the authors per paper:

∑kp

a
Ct(a)
Mt(a)

5. Average citations per author per paper:
�kp

a
Ct(a)
Mt(a)

kp

6. Maximum number of citations per paper: maxa
Ct(a)
Mt(a)

– Features based on the number of papers Mt(a)
7. Sum of all papers published by all the authors:

∑kp

a Mt(a)

8. Average number of papers per author:
�kp

a Mt(a)
kp

9. Maximum number of papers: maxa Mt(a)
– Features based on the number of coauthors At(a)

10. Sum of all coauthors of each authors:
∑kp

a At(a)

11. Average number of coauthors per author:
�kp

a At(a)
kp

12. Maximum number of coauthors: maxa At(a)

A priori link-based features. Following [6], consider:

– the provisioning matrix Pa,t is the matrix induced by the authoring relation-
ship Ea,t, defined as:

Ea,t ⊆ Va × Vp � {(a, p∗) ∈ Ea ∧ time(p∗) < t}

where the i − th row corresponds to the papers written by the author i.
– the evaluation matrix Pe,t is the matrix induced by the evaluation relation-

ship Ee,t, defined as:

Ee,t ⊆ Va × Vp � {(e, p̂) : (e, p∗) ∈ Ea,t ∧ (p∗, p̂) ∈ Ec ∧ time(p∗) < t}

where the i − th row corresponds to the papers cited by the author i

Naming R(p) the score of the paper p, At′(a) and Ht′(a) respectively the au-
thority the hub of the author a, the EigenRumor algorithm states that

– R = PT
a,tAt that captures the intuition that good papers are likely written

by good authors
– R = PT

e,tHt that captures the intuition that good papers are likely cited by
good authors

– At = Pa,tR good authors usually write good papers
– Ht = Pe,tR good authors usually cite good papers

Combining the previous equations we obtain the following formula for the
score vector

R = αPT
a,tAt + (1 − α)PT

e,tHt

Aggregating the authority and hub scores for all the coauthors of each paper,
we obtain 7 features:
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– Relevance of the paper
1. EigenRumor R(p);

– Authority features
2. Sum of the authority scores of all the coauthors:

∑kp

a At(a)

3. Average authority per author:
�kp

a At(a)
kp

4. Maximum authority: maxaAt(a)
– Hub features

5. Sum of the hub scores of all the coauthors:
∑kp

a Ht(a)

6. Average hub per author:
�kp

a Ht(a)
kp

7. Maximum hub: maxaHt(a)
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Abstract. Compressed graphs representation has become an attractive
research topic because of its applications in the manipulation of huge
Web graphs in main memory. By far the best current result is the tech-
nique by Boldi and Vigna, which takes advantage of several particular
properties of Web graphs. In this paper we show that the same prop-
erties can be exploited with a different and elegant technique, built on
Re-Pair compression, which achieves about the same space but much
faster navigation of the graph. Moreover, the technique has the poten-
tial of adapting well to secondary memory. In addition, we introduce
an approximate Re-Pair version that works efficiently with limited main
memory.

1 Introduction

A compressed data structure, besides answering the queries supported by its clas-
sical (uncompressed) counterpart, uses little space for its representation. Nowa-
days this kind of structures is receiving much attention because of two reasons:
(1) the enormous amounts of information digitally available, (2) the ever-growing
speed gaps in the memory hierarchy. As an example of the former, the graph of
the static indexable Web was estimated in 2005 to contain more than 11.5 billion
nodes [12] and more than 150 billion links. A plain adjacency list representation
would need around 600 GB. As an example of (2), access time to main memory
is about one million times faster than to disk. Similar phenomena arise at other
levels of memory hierarchy. Although memory sizes have been growing fast, new
applications have appeared with data management requirements that exceeded
the capacity of the faster memories. Because of this scenario, it is attractive to
design and use compressed data structures, even if they are several times slower
than their classical counterpart. They will run much faster anyway if they fit in
a faster memory.

In this scenario, compressed data structures for graphs have suddenly gained
interest in recent years, because a graph is a natural model of the Web structure.
Several algorithms used by the main search engines to rank pages, discover com-
munities, and so on, are run over those Web graphs. Needless to say, relevant Web
graphs are huge and maintaining them in main memory is a challenge, especially
if we wish to access them in compressed form, say for navigation purposes.
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As far as we know, the best results in practice to compress Web graphs such
that they can be navigated in compressed form are those of Boldi and Vigna [6].
They exploit several well-known regularities of Web graphs, such as their skewed
in- and out-degree distributions, repetitiveness in the sets of outgoing links, and
locality in the references. For this sake they resort to several ad-hoc mechanisms
such as node reordering, differential encoding, compact interval representations
and references to similar adjacency lists.

In this paper we present a new way to take advantage of the regularities that
appear in Web graphs. Instead of different ad-hoc techniques, we use a uniform
and elegant technique called Re-Pair [19] to compress the adjacency lists. As the
original linear-time Re-Pair compression requires much main memory, we develop
an approximate version that adapts to the available space and can smoothly work
on secondary memory thanks to its sequential access pattern. This method can
be of independent interest. Our experimental results over different Web crawls
show that our method achieves space comparable to that of Boldi and Vigna,
yet our navigation is several times faster.

2 Related Work

Let us consider graphs G = (V, E), where V is the set of vertices and E is
the set of edges. We call n = |V | and e = |E| in this paper. Standard graph
representations such as the incidence matrix and the adjacency list require n(n−
1)/2 and 2e logn bits, respectively, for undirected graphs. For directed graphs
the numbers are n2 and e log n, respectively1. We call the neighbors of a node
v ∈ V those u ∈ V such that (v, u) ∈ E.

The oldest work on graph compression focuses on undirected unlabeled graphs.
The first result we know of [30] shows that planar graphs can be compressed into
O(n) bits. The constant factor was later improved [17], and finally a technique
yielding the optimal constant factor was devised [14]. Results on planar graphs
can be generalized to graphs with constant genus [20]. More generally, a graph
with genus g can be compressed into O(g + n) bits [10]. The same holds for
a graph with g pages. A page is a subgraph whose nodes can be written in a
linear layout so that its edges do not cross. Edges of a page hence form a nested
structure that can be represented as a balanced sequence of parentheses.

Some classes of planar graphs have also received special attention, for example
trees, triangulated meshes, triconnected planar graphs, and others [15,17,13,28].
For dense graphs, it is shown that little can be done to improve the space required
by the adjacency matrix [23].

The above techniques consider just the compression of the graph, not its
access in compressed form. The first compressed data structure for graphs we
know of [16] requires O(gn) bits of space for a g-page graph. The neighbors of
a node can be retrieved in O(log n) time each (plus an extra O(g) complexity
for the whole query). The main idea is again to represent the nested edges using
parentheses, and the operations are supported using succinct data structures
1 In this paper logarithms are in base 2.
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that permit navigating a sequence of balanced parentheses. The retrieval was
later improved to constant time by using improved parentheses representations
[22], and also the constant term of the space complexity was improved [9]. The
representation also permits finding the degree (number of neighbors) of a node,
as well as testing whether two nodes are connected or not, in O(g) time.

All those techniques based on number of pages are unlikely to scale well to
more general graphs, in particular to Web graphs. A more powerful concept that
applies to this type of graph is that of graph separators. Although the separator
concept has been used a few times [10,14,8] (yet not supporting access to the
compressed graph), the most striking results are achieved in recent work [5,4].
Their idea is to find graph components that can be disconnected from the rest
by removing a small number of edges. Then, the nodes within each component
can be renumbered to achieve smaller node identifiers, and only a few external
edges must be represented.

They [4] apply the separator technique to design a compressed data structure
that gives constant access time per delivered neighbor. They carefully implement
their techniques and experiment on several graphs. In particular, on a graph of 1
million (1M) nodes and 5M edges from the Google programming contest2, their
data structures require 13–16 bits per edge (bpe), and work faster than a plain
uncompressed representation using arrays for the adjacency lists. It is not clear
how these results would scale to larger graphs, as much of their improvement
relies on smart caching, and this effect should vanish with real Web graphs.

There is also some work specifically aimed at compression of Web graphs
[7,1,29,6]. In this graph the (labeled) nodes are Web pages and the (directed)
edges are the hyperlinks. Several properties of Web graphs have been identified
and exploited to achieve compression:

Skewed distribution: The indegrees and outdegrees of the nodes distribute
according to a power law, that is, the probability that a page has i links is
1/iθ for some parameter θ > 0. Several experiments give rather consistent
values of θ = 2.1 for incoming and θ = 2.72 for outgoing links [2,7].

Locality of reference: Most of the links from a site point within the site. This
motivates in [3] the use of lexicographical URL order to list the pages, so
that outgoing links go to nodes whose position is close to that of the current
node. Gap encoding techniques are then used to encode the differences among
consecutive target node positions.

Similarity of adjacency lists: Nodes close in URL lexicographical order share
many outgoing links [18,6]. This permits compressing them by a reference to
the similar list plus a list of edits. Moreover, this translates into source nodes
pointing to a given target node forming long intervals of consecutive numbers,
which again permits easy compression.

In [29] they partition the adjacency lists considering popularity of the nodes, and
use different coding methods for each partition. A more hierarchical view of the
nodes is exploited in [26]. In [1,27] they take explicit advantage of the similarity
2 www.google.com/programming-contest, not anymore available.
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property. A page with similar outgoing links is identified with some heuristic, and
then the current page is expressed as a reference to the similar page plus some
edit information to express the deletions and insertions to obtain the current
page from the referenced one. Finally, probably the best current result is from
[6], who build on previous work [1,27] and further engineer the compression to
exploit the properties above.

Experimental figures are not always easy to compare, but they give a rea-
sonable idea of the practical performance. Over a graph with 115M nodes and
1.47 billion (1.47G) edges from the Internet Archive, [29] require 13.92 bpe (plus
around 50 bits per node, bpn). In [27], over a graph of 61M nodes and 1G edges,
they achieve 5.07 bpe for the graph. In [1] they achieve 8.3 bpe (no information
on bpn) over TREC-8 Web track graphs (WT2g set), yet they cannot access the
graph in compressed form. In [7] they require 80 bits per node plus 27.2 bpe
(and can answer reverse neighbor queries as well).

By far the best figures are from [6]. For example, they achieve space close to 3
bpe to compress a graph of 118M nodes and 1G link from WebBase3. This space,
however, is not sufficient to access the graph in compressed form. An experiment
including the extra information required for navigation is carried out on a graph
of 18.5M nodes and 292M links, where they need 6.7 bpe to achieve access times
below the microsecond. Those access times are of the same order of magnitude
of other representations [29,26,27]. For example, the latter reports times around
300 nanoseconds per delivered edge.

A recent proposal [24] advocates regarding the adjacency list representation
as a text sequence and use compressed text indexing techniques [25], so that
neighbors can be obtained via text decompression and reverse neighbors via
text searching. The concept and the results are interesting but not yet sufficiently
competitive with those of [6].

3 Re-Pair and Our Approximate Version

Re-Pair [19] is a phrase-based compressor that permits fast and local decom-
pression. It consists of repeatedly finding the most frequent pair of symbols in a
sequence of integers and replacing it with a new symbol, until no more replace-
ments are convenient. This technique was recently used in [11] for compressing
suffix arrays. More precisely, Re-Pair over a sequence T works as follows:

1. It identifies the most frequent pair ab in T
2. It adds the rule s → ab to a dictionary R, where s is a new symbol that does

not appear in T .
3. It replaces every occurrence of ab in T by s.4
4. It iterates until every pair in T appears once.

Let us call C the resulting text (i.e., T after all the replacements). It is easy
to expand any symbol c from C in time linear on the expanded data (that is,
3 www-diglib.stanford.edu/~testbed/doc2/WebBase/
4 As far as possible, e.g. one cannot replace both occurrences of aa in aaa.
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optimal): We expand c using rule c → c′c′′ in R, and continue recursively with
c′ and c′′, until we obtain the original symbols of T . In [11] they propose a
new way of compressing the dictionary R which further reduces the space. This
compression makes it worthy to replace pairs that appear just twice in the text.

Despite its quadratic appearance, Re-Pair can be implemented in linear time
[19]. However, this requires several data structures to track the pairs that must
be replaced. This is usually problematic when applying it to large sequences, see
for example [31]. Indeed, it was also a problem when using it over suffix arrays
[11], where a couple of techniques were proposed to run with restricted memory.
A first one was an O(n log n) time exact method (meaning that it obtained the
same result as the algorithm as described), which was in practice extremely slow.
A second one was an approximate algorithm (which does not always choose the
most frequent pair to replace), which was much faster and lost some compression,
yet it applies only to suffix arrays.

We present now an alternative approximate method that (1) works on any
sequence, (2) uses as little memory as desired on top of T , (3) given an extra
memory to work, can trade accurateness for speed, (4) is able to work smoothly
on secondary memory due to its sequential access pattern.

We describe the method assuming we have M > |T | main memory available.
If this is not the case, we can anyway run the algorithm by maintaining T on disk
since, as explained, we will access it sequentially (performing several passes).

We place T inside the bigger array of size M , and use the remaining space
as a (closed) hash table H of size |H | = M − |T |. Table H stores unique pairs
of symbols ab occurring in T , and a counter of the number of occurrences it
has in T . The key ab is represented as a single integer by its position in T (any
occurrence works). We traverse T = t1t2 . . . sequentially and insert all the pairs
titi+1 into H . If, at some point, the table surpasses a load factor 0 < α < 1,
we do not insert new pairs anymore, yet we keep traversing of T to increase the
counters of already inserted pairs.

After the traversal is completed, we scan H and retain the k most frequent
pairs from it, for some parameter k ≥ 1. A heap of k integers is sufficient for this
purpose. Those pairs will be simultaneously replaced in a second pass over T .
For this sake we must consider that some replacements may invalidate others,
for example we cannot replace both ab and bc in abc. Some pairs can have so
many occurrences invalidated that they are not worthy of replacement anymore
(especially at the end, when even the most frequent pairs occur a few times).

The replacement proceeds as follows. We empty H and insert only the k pairs
to be replaced. This time we associate to each pair a field pos, the position of its
first occurrence in T . This value is null if we have not yet seen any occurrence
in this second pass, and proceed if we have already started replacing it. We now
scan T and use H to identify pairs that must be replaced. If pair ab is in H and
its pos value is proceed, we just replace ab by sz, where s is the new symbol for
pair ab and z is an invalid entry. If, instead, pair ab already has a first position
recorded in pos, and we read this position in T and it still contains ab (after
possible replacements that occurred after we saw that position), then we make
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both replacements and set the pos value to proceed. Otherwise, we set the pos
value of pair ab to the current occurrence we are processing. This method ensures
that we create no new symbols s that will appear just once in T .

After this replacement, we compact T by deleting all the z entries, and restart
the process. As now T is smaller, we can have a larger hash table of size |H | =
M − |T |. The traversal of T , regarded as a circular array, will now start at the
point where we stopped inserting pairs in H in the previous stage, to favor a
uniform distribution of the replacements.

Assume the exact method carries out r replacements. This approximate
method can carry out r replacements (achieving hopefully similar compression)
in time O(�r/k�(n + h log k)) average time, where h = |H | = O(n). Thus we
can trade time for accurateness by tuning k. This analysis, however, is approxi-
mate, as some replacements could be invalidated by others and thus we cannot
guarantee that we carry out k of them per round. Yet, the analysis is useful to
explain the space/time tradeoff involved in the choice of k.

Note that even k = 1 does not guarantee that the algorithm works exactly as
Re-Pair, as we might not have space to store all the different pairs in H . In this
respect, it is interesting that we become more accurate (thanks to a larger H)
for the later stages of the algorithm, as by that time the frequency distribution
is flatter and more precision is required to identify the best pairs to replace.

As explained, the process works well on disk too. This time T is on disk and
table H occupies almost all the main memory, |H | ≈ M . In H we do not store
the position of pair ab but instead ab explicitly, to avoid random accesses to
T . The other possible random access is the one where we check pos, the first
occurrence of a pair ab, when replacing T . Yet, we note that there are at most
k positions in T needing random access at any time, so a buffer of k disk pages
totally avoids the cost of those accesses. That is, we maintain in main memory
the disk blocks containing the position pos of each pair to be replaced. When pos
changes we can discard the disk block from main memory and retain the new
one instead (which is the block we are processing). It is possible, however, that
we have to write back those pages to disk, but this occurs only when we replace
the first occurrence of a pair ab, that is, when pos changes from a position to
the value proceed. This occurs at most k times per stage.

Thus the worst-case I/O cost of this algorithm is O(�r/k�(n/B + k)) =
O(�r/k� n/B + r + k), where B is the disk block size (again, this is is an ap-
proximation).

4 A Compressed Graph Representation

Let G = (V, E) be the graph we wish to compress and navigate. Let V =
{v1, v2, . . . , vn} be the set of nodes in arbitrary order, and adj(vi) = {vi,1, vi,2, . . .
vi,ai} the set of neighbors of node vi. Finally, let vi be an alternative identifier
for node vi. We represent G by the following sequence:

T = T (G) = v1 v1,1 v1,2 . . . v1,a1 v2 v2,1 v2,2 . . . v2,a2 . . . vn vn,1 vn,2 . . . v1,an
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so that vi,j < vi,j+1 for any 1 ≤ i ≤ n, 1 ≤ j < ai. This is essentially the
concatenation of all the adjacency lists with separators that indicate the node
each list belongs to.

Applying Re-Pair to this representation T (G) has several advantages:

– Re-Pair permits fast local decompression, as it is a matter of extracting
successive symbols from C (the compressed T ) and expanding them using
the dictionary of rules R.

– This works also very well if T (G) must be anyway stored in secondary mem-
ory because the accesses to C are local and sequential, and moreover we ac-
cess fewer disk blocks because it is a compressed version of T . This requires,
however, that R fits in main memory, which can be forced at compression
time, at the expense of losing some compression ratio.

– As the symbols vi are unique in T , they will not be replaced by Re-Pair. This
guarantees that the beginning of the adjacency list of each vi will start at a
new symbol in C, so that we can decompress it in optimal time O(|adj(vj)|)
without decompressing unnecessary symbols.

– If there are similar adjacency lists, Re-Pair will spot repeated pairs, therefore
capturing them into shorter sequences in C. Actually, assume adj(vi) =
adj(vj). Then Re-Pair will end up creating a new symbol s which, through
several rules, will expand to adj(vi) = adj(vj). In C, the text around those
nodes will read visvi+1 . . . vjsvj+1. Even if those symbols do not appear
elsewhere in T (G), the compression method for R developed in [11] will
represent R using |adj(vi)| numbers plus 1 + |adj(vi)| bits. Therefore, in
practice we are paying almost the same as if we referenced one adjacency
list from the other. Thus we achieve, with a uniform technique, the result
achieved in [6] by explicit techniques such as looking for similar lists in an
interval of nearby nodes.

– Even when the adjacency lists are not identical, Re-Pair can take partial
advantage of their similarity. For example, if we have abcde and abde, Re-
Pair can transform them to scs′ and ss′, respectively. Again, we obtain
automatically what in [6] is done by explicitly encoding the differences using
bitmaps and other tools.

– The locality property is not exploited by Re-Pair, unless its translates into
similar adjacency lists. This, however, makes our technique independent of
the numbering. In [6] it is essential to be able of renumbering the nodes
according to site locality. Despite this is indeed a clever numbering for other
reasons, it is possible that renumbering is forbidden if the technique is used
inside another application. However, we show next a way to exploit locality.

The representation T (G) we have described is useful for reasoning about the
compression performance, but it does not give an efficient method to know where
a list adj(vi) begins. For this sake, after compressing T (G) with Re-Pair, we
remove all the symbols vi from the compressed sequence C (as explained, those
symbols must remain unaltered in C). Using exactly the same space we have
gained with this removal, we create a table that, for each node vi, stores a
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pointer to the beginning of the representation of adj(vi) in C. With it, we can
obtain adj(vi) in optimal time for any vi.

If we are allowed to renumber the nodes, we can exploit the locality property
in a subtle way. We let the nodes be ordered and numbered by their URL,
and every adjacency list encoded using differential encoding. The first value is
absolute and the rest represents the difference to the previous value. For example
the list 4 5 8 9 11 12 13 is encoded as 4 1 3 1 2 1 1.

Differential encoding is usually a previous step to represent small numbers
with fewer bits. We do not want to do this as it hampers decoding speed. Our
main idea to exploit differential encoding is that, if every node tends to have local
links, there will be many small differences we could exploit with Re-Pair, say
pairs like (1, 1), (1, 2), (2, 1), etc. We also present results for this variant and show
that the compression is improved at the expense of some extra decompression.

5 Experimental Results

The experiments were run on a Pentium IV 3.0 GHz with 4GB of RAM using
Gentoo GNU/Linux with kernel 2.6.13 and g++ with -O9 and -DNDEBUG options.
The compression ratios r we show are the compressed file size as a percentage
of the uncompressed file size.

We first study the performance of our approximate technique described in
Section 3, as compared to the original technique. Table 1 shows the results for
different M (amount of main memory for construction) and k parameters, over a
400 MB suffix array built from a 100 MB XML file (see [11]). The same file with the
method proposed in [11] achieves r = 20.08% after 7.22 hours. The approximate
version that works only over suffix arrays achieves 21.3% in 3 minutes.

As it can be seen, our approximate method obtains compression ratios rea-
sonably close to the original one, while being practical in time and RAM for con-
struction. In the following we only use the approximate method, as our graphs
are much larger and the exact method does not run.

We now study our graph compression proposal (Section 4). Fig. 1 shows the
results for four Web crawls, all downloaded from http://law.dsi.unimi.it/.
UK is a graph with 18,520,486 nodes and 298,113,762 edges, EU has 862,664 nodes
and 19,235,140 edges, Arabic has 22,744,080 nodes and 639,999,458 edges, and
Indochina has 7,414,866 nodes and 194,109,311 edges.

Table 1. Compression ratios and times for different memory usage for construction
M , and parameter k

k M (MB) r % time(min) k M (MB) r % time(min)

10,000,000 1126 23.41% 22 10,000,000 891 27.40% 21
5,000,000 930 23.25% 13 5,000,000 763 27.86% 12
1,000,000 840 22.68% 13 1,000,000 611 29.42% 14

500,000 821 22.44% 18 500,000 592 28.30% 21
100,000 805 22.03% 59 100,000 576 30.49% 67
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Fig. 1. Space and time to find neighbors for different graph representations, over dif-
ferent Web crawls. BV-Memory represents the minimum heap space needed by the
process to run.
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We show on the left side the behavior of our Re-Pair-based method with and
without differential encoding, compared to Boldi & Vigna’s implementation [6]
run on our machine with different space/time tradeoffs. The space is measured in
bits per edge (bpe), where the total space cost is divided by the number of edges.
The implementation of Boldi & Vigna gives a bpe measure that is consistent
with the sizes of the generated files. However, their process (in Java) needs
more memory to run. This could suggest that they actually need to build more
structures that are not stored on the file, but this is difficult to quantify because
of other space overheads that come from Java itself and from the WebGraph
framework their code is inside. To account for this, we draw a second line that
shows the minimum amount of RAM needed for their process to run. In all cases,
however, the times we show are obtained with the garbage collector disabled and
sufficient RAM to let the process achieve maximum speed. Although our own
code is in C++, we found that the Java compiler achieves very competitive
results (in unrelated tests over a similar code).

On the right side we compare our method with two fast uncompressed rep-
resentations: a plain one using 32-bit integers to represent the adjacency lists,
and a compact representation using �log2 n� bits for every link and �log2 m� for
every node (to point inside the adjacency list).

The results show that our method is a very competitive alternative to Boldi &
Vigna’s technique, which is currently the best by a wide margin for Web graphs.
In all cases, our method gives a comparable amount of space. Moreover, using
the same amount of space, our method is always faster (usually twice as fast,
even considering their best line). In addition, one of our versions does not impose
any particular node numbering.

Compared to an uncompressed graph representation, our method is also a
very interesting alternative. It is 3–5 times smaller than the compact version
and 2–3 times slower than it; and it is 4–6 times smaller than the the plain
version and 3–6 times slower. In particular, a graph like Arabic needs 2.4 GB of
RAM with a plain representation, whereas our compressed version requires only
420 MB of RAM. This can be easily manipulated in a normal 1 GB machine,
whereas the plain version would have to resort to disk.

6 Conclusions

We have presented a graph compression method that takes advantage of simi-
larity between adjacency lists by using Re-Pair [19], a phrase-based compressor.
The results over different Web crawls show that our method achieves compres-
sion ratios similar to the best current schemes [6], while being significantly faster
to navigate the compressed graph. Our scheme adapts well to secondary memory,
where it can take fewer accesses to disk than its uncompressed counterpart for
navigation. In passing, we developed an efficient approximate version of Re-Pair,
which also works well on secondary memory. Our work opens several interesting
lines for future work:
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1. More thorough experiments, considering also the case where the construction
and/or the navigation must access secondary memory.

2. Thorough exploration of the performance of our approximate Re-Pair method
by itself. Apart from studying it in more general scenarios, we are consider-
ing tuning it in different ways. For example we could use a varying k across
the compression stages.

3. Further study of the compression format itself and tradeoffs. For example
it is possible to compress sequence C with a zero-order compressor (the
zero-order entropy of our C sequences tells that its size could be reduced
to 61%-77%), although expansion of symbols in C will be slower. Another
tradeoff is obtained by replacing the vector of pointers from each vj to its list
in C by a bitmap of |C| bits that mark the beginning of the lists. A select(j)
operation (which gives the position of the j-th bit set [21]) over this bitmap
would give the position of adj(vj) in C. This is slower than a direct pointer
but will usually save space. For example we would save 1.0 bits/edge in the
UK crawl (estimated without an implementation).

4. Combine the current representation with the ideas advocated in [24], so as
to have a kind of self-index which, with some overhead over the current
representation, would be able of finding reverse neighbors and answer other
queries such as indegree and outdegree of a node, presence of a specific link,
and so on5.
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Abstract. We present a filtering based algorithm for the k-mismatch
pattern matching problem with don’t cares. Given a text t of length n
and a pattern p of length m with don’t care symbols in either p or t and
a bound k, our algorithm finds all the places that the pattern matches
the text with at most k mismatches. The algorithm is deterministic and
runs in O(nm1/3k1/3 log2/3 m) time. The location of the mismatches at
each alignment is also given at no extra cost.

1 Introduction

We consider approximate string matching under the widely used Hamming dis-
tance. In particular our interest is in a bounded version of this problem which
we call k-mismatch with don’t cares. Given a text t of length n and a pattern
p of length m with don’t care symbols and a bound k, our algorithms find all
the places that the pattern matches the text with at most k mismatches. If the
distance is greater than k, the algorithm need only report that fact and not give
the actual Hamming distance.

The problem of finding all the occurrences of a given pattern of length m
in a text t of length n is a classic one in computer science whose linear time
solutions were first presented in the 1970s [4, 12]. The problem of determining
the time complexity of exact matching with optional single character don’t care
symbols has also been well studied. Fischer and Paterson [9] presented the first
solution based on fast Fourier transforms (FFT) with an O(n log m log |Σ|) time
algorithm in 19741, where Σ is the alphabet that the symbols are chosen from.
Subsequently, the major challenge has been to remove this dependency on the
alphabet size. Indyk [10] gave a randomised O(n log n) time algorithm which was
followed by a simpler and slightly faster O(n log m) time randomised solution by
Kalai [11]. In 2002, the first deterministic O(n log m) time solution was given [6]
which was then further simplified in [5].

1 Throughout this paper we assume the RAM model when giving the time complexity
of the FFT. This is in order to be consistent with the large body of previous work
on pattern matching with FFTs.
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The key observation given by [5] but implicit in previous work is that for
numeric strings, if there are no don’t care symbols then for each location 1 ≤
i ≤ n − m + 1 we can calculate

m∑

j=1

(pj − ti+j−1)2 =
m∑

j=1

(p2
j − 2pjti+j−1 + t2i+j−1) (1)

in O(n log m) time using FFTs. Wherever there is an exact match this sum will
be exactly 0. If p and t are not numeric, then an arbitrary one-to-one mapping
can be chosen from the alphabet to the set of positive integers N. In the case of
matching with don’t cares, each don’t care symbol in p or t is replaced by a 0
and the sum is modified to be

m∑

j=1

p′jt
′
i+j−1(pj − ti+j−1)2

where p′j = 0 (t′i = 0) if pj (ti) is a don’t care symbol and 1 otherwise. This sum
equals 0 if and only if there is an exact match with don’t cares and can also be
computed in O(n log m) time using FFTs.

Approximate matching is a key technique that is both widely studied and used
in practice. The motivation might be to compensate for errors in a document, or
for example to look for similar images in a library or in the case of bioinformatics
to look for functional similarities between genes or proteins. However, there
may still be values that are unknown in all these cases and any measure of
approximation will ideally take this into account. As a more detailed example,
a rectangular image segment may contain a facial image and the objective is to
identify the face in a larger scene. However, background pixels around the faces
may be considered to be irrelevant for facial recognition and these should not
affect the search algorithm. Alternatively, a consensus sequence derived from
multiple alignment in computational biology (see e.g. [8]) may contain unknown
values and the aim is to perform approximate matching rapidly on a large DNA
or protein database. Due to the asymmetry between query and database or
pattern and text it is often the case that uncertainty lies in either the pattern
or the text but not both. It is this model that is considered here.

2 Related Work and Previous Results

Much progress has been made in finding fast algorithms for the k-mismatch
problem without don’t cares over the last 20 years. O(n

√
m log m) time solutions

to the k-mismatch problem based on repeated applications of the FFT were
given independently by both Abrahamson and Kosaraju in 1987 [1, 13]. Their
algorithms are in fact independent of the bound k and report the Hamming
distance at every position irrespective of its value. In 1985 Landau and Vishkin
gave a beautiful O(nk) algorithm that is not FFT based which uses constant
time LCA operations on the suffix tree of p and t [14]. This was subsequently
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improved in [3] to O(n
√

k log k) time by a method based on filtering and FFTs
again. Approximations within a multiplicative factor of (1 + ε) to the Hamming
distance can also be found in O(n/ε2 log m) time [10]. A variant of the edit-
distance problem (see e.g. [15]) called the k-difference problem with don’t cares
was considered in [2].

To the authors’ knowledge, no non-naive algorithms have been given to date
for the k-mismatch problem with don’t cares. However, the O(n

√
m logm) divide

and conquer algorithms of Kosaraju and Abrahamson [1, 13] can be easily ex-
tended to handle don’t cares in both the pattern and text with little extra work.
This is because the algorithm counts matches and not mismatches. First we
count the number of non-don’t care matches at each position i in O(n

√
m log m)

time. Then we need only subtract this number from the maximum possible num-
ber of non-don’t care matches in order to count the mismatches. To do this we
create a new pattern string p′ so that p′j = 1 if pj is not a don’t care and pj = 0
otherwise. A new text string t′ is also made in the same way. p′ ⊗ t′ now gives us
the maximum number of non-don’t care matches possible at each position. This
single cross-correlation calculation takes O(n log m) time. Therefore the overall
running time remains O(n

√
m log m).

3 Problem Definition and Preliminaries

Let Σ be a set of characters which we term the alphabet, and let φ be the don’t
care symbol. Let t = t1t2 . . . tn ∈ Σn be the text and p = p1p2 . . . pm ∈ Σm the
pattern. Either the pattern or the text may also include φ in their alphabet but
not both. The terms symbol and character are used interchangeably throughout.
Similarly, we will sometimes refer to a location in a string and synonymously at
other times the position.

– Define HD(i) to be the Hamming distance between p and t[i, . . . , i + m − 1]
and define the don’t care symbol to match any symbol in the alphabet.

– Define HDk(i) =
{

HD(i) if HD(i) ≤ k
⊥ otherwise

– We say that at position i in t, p is a k-mismatch if HDk(i) �= ⊥.
– We say that a non don’t care symbol is solid and that a match between two

non don’t care symbols is a solid match.

Our algorithms make extensive use of the fast Fourier transform (FFT). An
important property of the FFT is that in the RAM model, the cross-correlation,

(t ⊗ p)[i] def=
m∑

j=1

pjti+j−1, 0 ≤ i ≤ n − m + 1,

can be calculated accurately and efficiently in O(n log n) time (see e.g. [7], Chap-
ter 32). By a standard trick of splitting the text into overlapping substrings of
length 2m, the running time can be further reduced to O(n log m).
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4 Filtering for the k-Mismatch Problem

Our algorithm extends the approach taken in [3] and so we first give some techni-
cal background on how filtering can be used to speedup the k-mismatch problem
without don’t cares and the complications that don’t cares bring.

1. Choose
√

k characters that occur at least
√

2k times in the pattern (assume
for the moment that this is possible).

2. Construct a new filter subpattern by considering only the
√

k ∗
√

2k = 2k
positions in the pattern where one of these characters occurs.

3. Make a single pass over the text with the filter counting at each turn the total
number of positions in the filter that could be aligned with the text. This
takes at most O(

√
k) time per position in the text as at most

√
k positions

in the filter can match one character.
4. The total number of characters in the filter is 2k so a k-mismatch must

match at least k positions in the filter.
5. As the total sum of all the counts is at most n

√
k and each k-mismatch must

have a count of at least k then there are at most n/
√

k possible positions
where a k-mismatch can occur.

Following the filtering stage, the number of mismatches at each remaining loca-
tion in the text can be checked and an O(k) time mismatch algorithm based on
repeated constant time longest common extension (LCE) computations allows
this to be performed efficiently. The LCE is classically implement using constant
time LCA operations on the generalised suffix tree of p and t and will be run
at at most n/

√
k positions. If there were originally fewer than

√
k characters

that occur at least
√

2k times in the pattern then an alternative stage of match
counting is performed using fast FFT based cross-correlation calculations.

The difficulties that arise in this algorithm when considering don’t care sym-
bols are twofold. Even assuming that only one of the pattern and text contains
don’t care symbols, there is no known constant (or even sublinear) time LCE
algorithm for strings that allows don’t care symbols. Second, if we extend our
problem to allow don’t cares in both the pattern and text then the filtering
process fails immediately as there is no way of knowing how many matches the
filter should expect to find. A further minor obstacle is that to achieve the final
time complexity of O(n

√
k log k), certain periodicity properties of strings are

required which also do not hold when don’t cares are permitted.

5 The New Filtering Algorithm

In order to tackle the k-mismatch problem with don’t cares in either the pattern
or the text we generalise both the frequent/infrequent approach of Kosaraju and
Abrahamson [1, 13] and the filtering approach to pattern matching. Here we call
a symbol frequent if it appears at least d times in the pattern. We will separate
our algorithm into two cases. The first case will be when we have fewer than
f frequent symbols and the second case is when we have at least f frequent
symbols. f and d are variables that we will set later on in order to minimise the
overall running time of the algorithm.
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5.1 Fewer Than f Frequent Symbols

Let m′ be the number of solid symbols in the pattern. That is m′ = m minus the
number of don’t cares in the pattern. Instead of directly counting the number of
mismatches we will count the number of matches of solid symbols and subtract
this number from m′ giving us the number of mismatches.

1. Count the number of matches involving frequent characters. As there are
no more than f frequent characters this can be done with no more than f
cross-correlation calculations. The time for this step is therefore O(nf log m).

2. Count the number of matches involving infrequent characters. For each po-
sition i in the text we can find all the positions j in the pattern such that
pj = ti and add 1 to the i − j + 1th position of an auxiliary array C. At the
end of this step C will contain the number of matches involving infrequent
characters for every location i in t. There can be no more than d matching
positions for each i and so the total time for this step is O(nd).

The overall running time when there are fewer than f frequent symbols is there-
fore O(nd + nf log m).

5.2 At Least f Frequent Symbols

When there are at least f frequent symbols we can longer afford to perform a
cross-correlation for every different symbol. Instead we perform a filtering step
to reduce the number of different possible positions in the text at which the
pattern might have a k-mismatch. The following Theorem is the basis for the
filtering method.

Theorem 1. Assume there are at least f frequent symbols in the pattern, each
of which occurs at least d times. If fd > k then there are at most nd

fd−k possible
k-mismatch positions in the text.

Proof. The first step is to construct an appropriate filter F and then show its
use implies the result. For each of f different frequent symbols in p we choose
d different locations where they occur in p. At each one of those locations j set
Fj = pj . We let |F | = m and place don’t care symbols at all other positions in
F . In this way there are fd symbols from the alphabet in F and m − fd don’t
care symbols which match any symbol in t. For each position i in t, look up the
position of the at most d solid symbols in F that match t[i]. The location of
each of these matches in the pattern is used to update an auxiliary array D of
counts. Specifically, add 1 to each position D[i − j + 1] where it is found that
F [j] = t[i].

The sum of all the counts in the array D can be no more than nd as we have
added 1 at most d times for each position in t. However, for any given position of
F in t the total number of solid matches is at most fd. This implies that if there is
a k-mismatch at any position then the corresponding count in D must be at least
fd − k. Therefore, the total number of positions for which there is a k-mismatch
of the filter F is at most nd/(fd−k). As the filter is a subpattern of p this implies
the same upper bound for the number of k-mismatches of p in t.
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Input: Pattern p, text t and an integer k
Output: O[i] = HDk(p, t[i, . . . , i + m − 1])
if number of frequent symbols is fewer than the threshold f then

Count “frequent” matches by performing cross-correlations;
Count “infrequent” matches naively;
O[i] = number of solid symbols in p[i, . . . , i + m − 1] minus sum of frequent
and infrequent counts;

else
Construct filter pattern F ;
Eliminate positions that can’t match the filter F ;
Split pattern into � contiguous sub-patterns Pj ;
At each remaining position, eliminate Pj which match exactly;
O[i] = sum of mismatches for each remaining Pj ;

end

Algorithm 1. k-mismatch with don’t cares

As before, we check each one of the at most nd/(fd − k) positions where a
k-mismatch can occur. Each position takes O(km/�) time to check giving an
overall time of O(ndkm/(�(fd− k))) when there are at least f frequent symbols

Theorem 2. The k-mismatch with don’t cares problem can be solved using Al-
gorithm 1 in O(nm1/3k1/3 log2/3 m) time.

Proof. The running time of Algorithm 1 is the maximum of the two cases de-
scribed. This gives the running time as O(max(ndkm/(�(fd−k)), nd+nf log m)).

By setting � = f = d/ log m = 3

√
mk

log m we can derive the overall time complexity

which is O(nm1/3k1/3 log2/3 m).

6 Discussion

We have given the first filtering based algorithm for the k-mismatch problem
when don’t cares are allowed in either the pattern or the text. There is still a
considerable gap between the fastest Õ(n

√
k) time k-mismatch algorithm with-

out don’t cares and our Õ(nm1/3k1/3) time solution which we conjecture can be
at least partially closed. An even wider gap exists for LCE computation and it
is another intriguing question whether a sublinear solution to this problem can
be found when don’t care characters are permitted.
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Abstract. Conjunctive Boolean queries are a fundamental operation in web
search engines. These queries can be reduced to the problem of intersecting or-
dered sets of integers, where each set represents the documents containing one
of the query terms. But there is tension between the desire to store the lists
effectively, in a compressed form, and the desire to carry out intersection opera-
tions efficiently, using non-sequential processing modes. In this paper we eval-
uate intersection algorithms on compressed sets, comparing them to the best
non-sequential array-based intersection algorithms. By adding a simple, low-cost,
auxiliary index, we show that compressed storage need not hinder efficient and
high-speed intersection operations.

1 Introduction

Conjunctive Boolean queries are a fundamental operation in modern search engines.
They are used for both traditional AND-mode querying, and also in ranked querying
environments when dynamic pruning techniques are used, or when pre-computed static
scores such as PageRank contribute to answer ordering [Zobel and Moffat, 2006].

In abstraction, a conjunctive query q is handled by performing a |q|-way intersection
over |q| ordered sets of integers, with each set being drawn from a pre-computed index
and representing the documents containing one of the query terms. In this abstraction,
any efficient algorithm can be used to compute the set intersection. But there is consid-
erable tension between the desire to compress the index lists, and the need to process
them using efficient intersection algorithms. In particular, the majority of set-versus-set
and multi-way merging algorithms that have been described make use of non-sequential
access to the elements of the set and are thus at odds with standard sequential decom-
pression methods for compressed data.

In this paper we evaluate intersection algorithms on compressed sets, comparing
them to the best array-based intersection algorithms. Because sequential decompres-
sion implies linear search, compressed methods seem fated to be slower than array-
based alternatives. But, by adding a simple and low-cost auxiliary index, we show that
compressed storage need not hinder efficient and high-speed intersection operations.

2 Sets and Set Operations

Techniques for the manipulation of sets and set data have been a rich area of research
for several decades. At the most basic level, set manipulation can be reduced to the
classical dictionary problem, with three key operations needed:

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 137–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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INSERT(S, x) Return S ∪ x.
DELETE(S, x) Return S − x.
MEMBER(S, x) Return TRUE and a pointer to x if x ∈ S; otherwise return

FALSE.

Standard efficient structures supporting this group of operations include binary, bal-
anced, and self-adjusting trees; hash tables; and so on. If the universe over which the
sets are drawn is dense, and readily mapped to the integers 1 . . . u, for some value u,
then direct-access structures such the bitvector can be used, in which the space required
is proportional to u rather than to n, the number of elements in the set. Different families
of operations may be needed in some applications. For example:

INTERSECT(S, T ) Return S ∩ T .
JOIN(S, T ) Return S ∪ T .
DIFFERENCE(S, T ) Return S − T .

These high-level set operations are often implemented using a number of more primitive
operations. In the next group, there is a notion of “the current element”, and as the
sequence of operations unfolds, the locus of activity proceeds from one element to
another, and the current element migrates around the set:

PREDECESSOR(S) Return a pointer to the element in S that immediately pre-
cedes the current one.

SUCCESSOR(S) Return a pointer to the element in S that immediately fol-
lows the current one.

F-SEARCH(S, x) Return a pointer to the least element y ∈ S for which
y ≥ x, where x is greater than the value of the current
element.

For example, intersection operations on sets of comparable size can be readily be im-
plemented using the SUCCESSOR operation; and intersection and union operations on
sets of differing size can be implemented using the F-SEARCH operation, as described
in more detail in Section 3.

The three mid-level set operations can, in turn, be implemented on top of two basic
set operations:

RANK(S, x) Return |{y | y ∈ S and y ≤ x}|.
SELECT(S, r) Return a pointer to the r th largest element in S.

For example, SUCCESSOR(S) can be implemented as SELECT(S, 1 + RANK(curr)),
where curr is the value of the current item. In addition, once the RANK and SELECT

operations are available, the use of strategically chosen indices in a sequence of SELECT

operations can be used to provide an efficient non-sequential implementation of the
F-SEARCH operation.

In this paper we are primarily interested in INTERSECT operations, implementing
them via a sequence of SUCCESSOR and/or F-SEARCH calls. To set the scene for our
evaluation of techniques for implementing these operations, the next section briefly
summarizes several key data structures that can be used to represent sets.
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3 Set Representations

There are several fundamentally different ways in which sets of integers can be stored,
with different attributes, and different ways of handling the basic set operations.

Array of integers: A simple and efficient representation for a set is to store it in a
sorted array of integers. For example, a set of n = 15 objects over the universe 1 . . . u,
with (say) u = 32, can be stored in 15 words, or, via bit-packing techniques, in 15 five-
bit binary numbers. More generally, a set of n items each in the range 1 . . . u can be
stored in n log u bits. Implementation of the operation SELECT in O(1) time is imme-
diate, via array indexing; and MEMBER, RANK, and F-SEARCH require O(log n) time,
O(log n) time, and O(log d) time respectively, where d is the number of elements that
the current position is shifted by. Large-scale operations such as JOIN and DIFFERENCE

take O(n2) time, where n1 ≤ n2 are the sizes of the two sets involved, because every
member of the larger of the two sets might need to be listed in the output array. The
final operation, INTERSECT, is considered in more detail in the next section, but can be
implemented to require O(n1 log(n2/n1)) time in the worst case.

Bitvectors: Another classic set representation is as a bitvector – a u-bit sequence in
which the x th bit is a 1 if and only if x ∈ S. Use of a bitvector shifts the cost balance
of the various set operations. All of INSERT, DELETE, and MEMBER take O(1) time;
but JOIN, DIFFERENCE, and INTERSECT now take O(u) time, if an output set in the
same format is to be constructed. The F-SEARCH, RANK and SELECT operations are
also expensive if unadorned bitvector representations are used. But in text querying
applications, the output set need not be of the same data type, and can be generated as
an array of integers. That means that O(n1)-time intersection is possible via a sequence
of MEMBER operations, where n1 is the size of the smaller set.

A drawback of bitvectors is that their O(u) space requirement is significantly more
than the corresponding array representation when n � u. Also, if the application re-
quires PREDECESSOR and SUCCESSOR query support then the basic bitvector repre-
sentation may not be efficient.

Jacobson [1988] showed that the addition of a controlled amount of extra space al-
lowed RANK and SELECT to be supported using O(log u) bit probes, and thus that
SUCCESSOR, F-SEARCH and PREDECESSOR could also can be made efficient. Munro
[1996] later showed that these operations can be supported in O(1) time. Several fur-
ther improvements to the original approach have been reported, including some that
compress the bitvector by exploiting zones with low “1” densities (for example, [Clark,
1996, Pagh, 2001, Raman et al., 2002]). However, from a practical standpoint, the con-
stant factors to implement the data structures described are high, and these succinct
representations are driven by the desire for faster RANK and SELECT operations, nei-
ther of which is necessary when processing conjunctive Boolean queries.

Compressed representations: Compact representations of sets are almost all built
around a simple transformation, which takes a sorted list of elements and converts them
into a set of d-gaps. Any method for coding the gaps as variable length codes, including
Huffman codes, Golomb codes, Elias γ and δ codes, and static byte- and nibble-based
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codes, can then be used to encode the transformed list. Examples of these approaches
are presented by Witten et al. [1999] and Zobel and Moffat [2006].

Given that there are Cu
n = u!/((u − n)!n!) ways of extracting an n-subset from a

universe of u possibilities, compressed representations have as their target a cost of

log Cu
n = log

u!
(u − n)!n!

≈ n
(
log

u

n
+ 1.44

)

bits when n � u. Several of the codes listed in the previous paragraph attain, or
come close to, this bound. It is also possible to outperform this worst-case bound if
there is significant clustering within the set, and the n elements in the set are not a
random subset of the available universe. One such code is the Interpolative code of
Moffat and Stuiver [2000], which represents sets using binary codes, but in a non-linear
sequence that makes it sensitive, or adaptive, to any non-uniformity. Adaptivity is ex-
plored further below.

The great drawback of most compressed representations is their inability to effi-
ciently support any of the key set operations other than SUCCESSOR. In particular,
none of F-SEARCH, RANK, and SELECT are efficient. Indeed, in the face of sequen-
tial compression techniques based on d-gaps, a search that shifts the current element
by d positions requires O(d) time. To regain faster F-SEARCH functionality, additional
information can be added in to compressed set representation. For example,
Moffat and Zobel [1996] explore adding periodic skip information into the compressed
set, so that forward jumps can be taken. They suggest inserting such synchronization
points every O(

√
n) positions, and demonstrate improved performance on conjunctive

Boolean queries and pruned ranked queries, compared to sequential decoding.
More recently, Gupta et al. [2006] describe a two-level structure in which each of

the levels is itself a searchable structure containing compressed information, extending
earlier work by Blandford and Blelloch [2004]. In the Gupta et al. method, each block
of elements at the lower level is a compressed sequential representation of a balanced
binary search tree, stored using a pre-order traversal, and with a skip pointer inserted
after each node so that its left subtree can be bypassed if the search is to proceed next
into the right subtree. Sitting on top of these blocks is a further data structure that allows
the correct tree to be quickly identified. By balancing the sizes and performance of the
two structures, good performance is achieved.

4 Intersection Algorithms

This section reviews methods for intersecting sets in array-based implementations, be-
fore considering the cost of intersecting compressed sets.

Intersecting two sets: There is an interesting duality between set intersection tech-
niques and integer compression methods. To explore that duality, consider the standard
paradigm for calculating the intersection of two sets that is shown in Algorithm 1, where
n1 = |S| ≤ n2 = |T |, and each of the elements of the smaller set S is searched for in
turn the larger set, with the search always moving forward.

Assuming an array representation of T , there are a range of options for implementing
F-SEARCH. One is to use a full binary search, taking O(log n2) time per operation, and
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Algorithm 1. Standard two-set intersection, INTERSECT(S, T )
1: without loss of generality assume that n1 = |S| ≤ n2 = |T |
2: set A ← { }
3: set x ← FIRST(S)
4: while x is defined do
5: set y ← F-SEARCH(T, x)
6: if x = y then
7: add x to A
8: set x ← SUCCESSOR(S)

O(n1 log n2) time overall. This approach is the dual of the O(n log u) cost of using
binary codes to store an n-item set over the universe 1 . . . u. Another simple approach
is to implement F-SEARCH as a linear search from the current location, so that forwards
traversal over d elements, requires O(d) time. This approach is the dual of storing a set
using a Unary code, which in turn is equivalent to the use of a bitvector.

Better algorithms for array-based intersection also have dual codes. The
Hwang and Lin [1973] intersection approach corresponds to the use of a Golomb code
(see Witten et al. [1999]) to represent a subset. In the Golomb code, a gap of d ≥ 1 is
represented by coding 1+(d−1) div b in Unary, and then 1+(d−1) mod b in Binary,
choosing parameter b as (ln 2) · (u/n) ≈ 0.69(u/n). Similarly, in the Hwang and Lin
intersection algorithm a parameter b = 0.69((n1 + n2)/n1) is computed, and the
F-SEARCH operations in Algorithm 1 are implemented by stepping b items at a time
from the current location in T , and reverting to a binary search over a range of b
once a straddling interval has been determined. When Algorithm 1 is coupled with this
Golomb-Hwang-Lin searching method, the time required is O(n1 log(n2/n1)), which
is worst-case optimal in an information-theoretic sense.

Other integer codes also have duals. The Elias γ code (see Witten et al. [1999]) is
the dual of the exponential search mechanism of Bentley and Yao [1976] (referred to
by some authors as “galloping” search), and has also been used as a basis for F-SEARCH

operations. In the Elias γ code, the representation for a gap of d requires 1+2
log d� =
O(log d) bits, and a subset of n of u elements requires at most n (2 log(u/n) + 1) bits.
Similarly, the Baeza-Yates [2004] non-sequential intersection algorithm is the dual of
the Interpolative code of Moffat and Stuiver [2000], mentioned above. In this method,
the median of the smaller set is located in the larger set. Both sets are then partitioned,
and two recursive subproblems handled.

Adaptive algorithms: There has also been interest in the adaptive complexity of
codes, and hence (in the dual) of adaptive intersection methods. For example, if all
elements in S happen to be smaller than the first element in T , then an implementation
of F-SEARCH using linear search, or an exponential search, will execute in O(n1) time.
On the other hand the Golomb-based searching approach is non-adaptive and still gives
rise to an O(n1 log(n2/n1)) execution time, even for highly favorable arrangements.

Intersecting multiple sets: When there are multiple sets to be intersected, as is the
situation in a text retrieval system handling multi-word queries, the operations can either
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Algorithm 2. The Max Successor intersection algorithm
1: without loss of generality assume that |S1| ≤ |S2| ≤ · · · ≤ |S|q||
2: set A ← { }
3: set x ← FIRST(S1)
4: while x is defined do
5: for i = 1 to |q| do
6: set y ← F-SEARCH(Si, x)
7: if x �= y then
8: set x ← max(y, SUCCESSOR(S1))
9: break

10: else if i = |q| then
11: add x to A
12: set x ← SUCCESSOR(S1)

be implemented as a sequence of binary set intersections, or as a single operation on
multiple sets. Both approaches have their advantages and disadvantages. Set versus set
methods (svs) start with the smallest set, and in turn intersect it against each of the
others, in increasing order of size. Because the pivotal set of candidates can only get
smaller, the worst-case cost of this approach in an array-based implementation is

|q|∑

i=2

n1 log
ni

n1
≤ n1(|q| − 1) log

n|q|
n1

,

where the ordering on the sets is such that n1 ≤ n2 ≤ · · · ≤ n|q|. This method is both
simple to implement, and also localized in its data access pattern – only two sets are in
action at any given time. Either the standard intersection approach shown in Algorithm 1
can be used, or the adaptive Baeza-Yates method can be used.

The other approach is to process all sets simultaneously, and determine the elements
in their intersection in an interleaved manner. The simplest approach is to take each
element of the smallest set in turn, using it as an eliminator, and search for it in the
other sets until either it is found in all of them, or is not found in one of them. If it is
found, it is then part of the answer; if it is not found in one of the tests, it is eliminated,
and the next item from the smallest set is taken.

Demaine et al. [2000] suggested that the set ordering should be dynamic, and be
based at all times on the number of remaining elements, so that the cost of every oper-
ation is minimized in a greedy sense. As an alternative to the meta-cost of keeping the
collection of sets ordered by their number of unprocessed values, Barbay and Kenyon
[2002] suggested that the eliminator be chosen instead from the set that caused the
previous eliminator to be rejected, so that all sets have the opportunity to provide the
eliminator if they are the cause of a big “jump” in the locus of activity. Both of these
modified approaches – referred to as adp and seq respectively in the results that appear
below – are only of benefit if the input sets are non-uniform with respect to the uni-
verse. Barbay et al. [2006] provide a useful overview of how the different search and
intersection techniques interact, and summarize a range of previous work.

Max Successor: We also tested another method, max. It takes eliminators from the
smallest set, but when the eliminator is beaten, takes as the next eliminator the larger of
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Partial index, and list of remaining d−gaps

Original list of d−gaps

+3 +1 +4 +3 +1 +2+1

1 +3 +1 +1 +2 +4 +3 +1 +2 +2

1 188

Fig. 1. Extracting every p th document number, and storing it in full in an auxiliary array. In this
example p = 4, so every fourth d-gap from the list of d-gaps (top row, shaded entries) is extracted
and expanded and stored in the auxiliary array (middle row), together with a byte offset into each
block of p − 1 remaining d-gaps (bottom row).

the item that beat it, or the successor from the first list. Processing then starts at the first
list again. Algorithm 2 describes this new approach.

5 Practical Indexing

To provide practical access to compressed sets, we return to a classic algorithmic theme,
and build a partial index into the list of compressed d-gaps. Figure 1 sketches the pro-
posed arrangement. Every p th d-gap is removed from the compressed index list, ex-
panded into a document number, and stored in the auxiliary index. A bit offset (or byte
offset, for byte-aligned codes) is also stored, as shown in the middle row in Figure 1.
To search for a value x, the auxiliary index is first searched, to determine a containing
block. Any of the available searching methods can be employed. Once the block that
might contain x is identified, it is sequentially decoded and d-gaps resolved, starting at
the access pointer. The cost of searching a set of n values is thus at most O(log(n/p))
values accessed for a binary search in the auxiliary index, plus O(p) values decoded
during the linear search within the block. Taking p = k log n for some constant k gives
search costs that are O(log n).

To compute the storage cost of the altered arrangement, suppose that the underly-
ing compression method is an efficient one, and that the full set of n original d-gaps is
stored in n log(u/n) bits. Removing every p th gap multiplies that by (p−1)/p. Each of
the n/p entries in the auxiliary index requires log u bits for an uncompressed document
number, and log(n log(u/n)) ≤ log n + log log u bits for the access pointer, totaling

p − 1
p

n log
u

n
+

n

p
(log u + log n + log log u)

bits. If we again take p = k log n, this simplifies to

n log
u

n
+

n

k

(

2 +
log log u

log n

)

.
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When n ≥ log u, the overhead cost of the auxiliary index is thus O(n/k) bits, with
a search cost of O(k log n) time. In real terms, when k = 1, the cost of the auxiliary
index is two bits per pointer in addition to the compressed storage cost of the index lists.

One drawback of this hybrid approach is that F-SEARCH operations over a distance
of d are no longer guaranteed to take O(log d) time. For example, a search operation
that shifts the current location forward by d = log n items in a list containing n pointers
must, of necessity, involve sequential decoding within the next block of d-gaps, and thus
O(log n) time. One of the objectives of our experiments was to determine the extent to
which this issue affected practical operations.

Compared to the skipped inverted lists of Moffat and Zobel [1996], our blocks are
much shorter, the auxiliary index is maintained separately to the main sequence of d-
gaps rather than interleaved with it, and the auxiliary index is stored uncompressed.
These differences add to the space requirement of the inverted index, but allow faster
F-SEARCH operations, and thus faster INTERSECT computation. In recent independent
work, Sanders and Transier [2007] also investigate two-level representations to improve
intersection in compact sets. The main focus of their work is a variation on most sig-
nificant bit tabling to create buckets of roughly uniform size. Sanders and Transier also
consider the possibility of deterministic bucket sizes, in a method similar to the ap-
proach proposed here.

6 Experiments

This section describes the arrangements used to measure the execution cost of different
set intersection techniques in an environment typical of text search engines.

Collection and queries: All of our results are based on experiments with a large set
of queries, and the GOV2 collection of 426 GB of web data used in the TREC Terabyte
Track (see http://trec.nist.gov). This collection contains just over 25 million
documents, and about 87 million unique words. For our measurements, words that ap-
peared only one or twice in the collection were assumed to be handled directly in the
vocabulary rather than via index lists, and this meant that a total of 19,783,975 index
lists were considered. Each list was an ordered sequence of document numbers in the
range 1 to u = 25,205,181. Table 1 lists the cost of storing those lists using different
representations. For example, stored as uncompressed 32-bit integers, the index requires
23 GB, compared to a combinatorial set cost, summed over all the lists, of 6 GB. Byte
codes do not attain the latter target, nevertheless they provide an attractive space saving
compared to uncompressed integers, and an even greater saving compared to bitvectors.

The queries used against this collection were derived from a set supplied by Mi-
crosoft as being queries for which at least one of the top three answer documents was in
the .gov domain, as of early 2005. A total of 27,004 unique multi-word queries in the
set had conjunctive Boolean matches in the GOV2 collection. Table 2 shows the distri-
bution of query lengths in the query set, and the range of set sizes involved. Note how,
even in two term queries, the most common term appears in more than 5% of the doc-
uments. The average query length tested was 2.73 which is near the expected average
query length of 2.4 [Spink et al., 2001].

http://trec.nist.gov
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Table 1. Total space cost in gigabytes to store (in the center column) all of the inverted lists for the
426 GB TREC GOV2 collection, and (in the right column) the subset of the inverted lists referred
to by the experimental query set.

Data Representation
TREC GOV2 Query Set

19,783,975 words 15,208 words
Bitvector 58,051.4 44.6
Integer (32-bit) 22.6 14.1
d-gaps, byte code, and auxiliary index, k = 2 8.5 4.4
d-gaps and byte code 7.4 3.8
Combinatorial cost 5.9 2.7

Table 2. Length distribution of the 27,004 queries. The average query length is 2.73 terms.

query length |q| 2 3 4 5 6 7 8 9 10+
number of queries 15,517 7,014 2,678 1,002 384 169 94 44 102
matches (’000) 124 78 56 41 27 15 10 11 3
average n1 (’000) 338 325 348 356 288 248 165 226 112
average n|q| (’000) 1,698 5,725 10,311 14,317 15,927 17,365 17,958 18,407 19,236

Measurement: To carry out experiments, the index lists for the 15,208 words that
appeared in the query set were extracted from the index into a separate file, as shown
in the right-hand column of Table 1. Low frequency terms are rarely queried, and the
cost of the bitvector representation drops dramatically. On the other hand, the relative
fractions of the compressed representations suggest that more than half of the full index
still needs to be manipulated.

The set of queries was then executed using the various intersection algorithms. To
process one query, the set of lists pertinent to that query was read into memory while
the execution clock was stopped; the clock was then monitored while the query was
executed five times in a row to generate a list of answer document numbers in 1 . . . u;
and then the CPU time taken by the five operations was added to a running total, ac-
cording to the length of that query. For example, the time recorded for queries of length
two is the average of 5 × 15,517 = 77,585 executions of 15,517 different queries. We
also recorded the number of comparisons performed by each method, as a check against
previous results, but report only CPU times here.

Array-based intersection: The first question was the extent to which the adaptive
methods were superior to the standard ones. There are two levels at which adaptivity
is possible – by using exponential search rather than the worst-case optimal Golomb
search; and by performing all |q| − 1 merge operations in tandem with an enhanced
choice of eliminator at each step, as described in the previous section. The results of
these first experiments are shown in Figure 2, where it is assumed throughout that
the sets are stored as arrays. In the left-hand graph, Golomb search is used with three
multi-way methods, and the svs approach. The right-hand graph shows the same exper-
iment, but using exponential search. In both arrangements the svs ordering outperforms
the multi-set approaches, presumably as a consequence of the more tightly localized
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Fig. 2. Efficiency of different intersection algorithms with non-sequential search mechanisms, for
different query lengths in the TREC GOV2 dataset, and an array set representation. Methods adp,
seq, and max are multi-way methods; svs is the set-versus-set approach.
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Fig. 3. Efficiency of intersection algorithms for different query lengths in the TREC GOV2 dataset
on a 2.8 Ghz Intel Xeon with 2 GB of RAM: (a) fast methods, including the use of random
access, where svs is set-vs-set, using exponential search, bya is set-vs-set using the Baeza-Yates
method and binary search, and bvc is a bitvector-based evaluation; and (b) two methods that
use compressed data formats, where svs+bc involves sequential processing of byte codes, and
svs+bc+aux makes use of byte codes indexed by an auxiliary array with k = 2.

memory access pattern. Comparing the two graphs, the svs method benefits slightly
from exponential search. Note also that execution time tends not to grow as more terms
are added to the query – the cost is largely determined by the frequency of the rarest
element, and long queries are likely to use at least one low-frequency term.

We also tested the binary search-based Baeza-Yates [2004] method, which is adap-
tive by virtue of the search sequence. It operates on two sets at a time, but has little
locality of reference, and was slower than the svs approach.

Compressed indexing: Figure 3 compares uncompressed representations with two
different compressed representations, in all cases using an underlying set-versus-set
approach. In the left-hand graph the three best methods are shown – two using array
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Fig. 4. Tradeoffs between index cost and query throughput, plotted as the average amount of data
processed per query over all 27,004 queries, versus the average time taken per query

representations and non-sequential searching methods, and one (labeled bvc) based on
bitvector operations. In the right-hand graph both lines refer to indexes stored in com-
pressed form using byte codes. In the svs+bc approach, F-SEARCH operations are han-
dled via sequential access and linear search; and in the svs+bc+aux method, through
the use of an auxiliary index array. Use of the index array greatly increases processing
speed on long queries, and allows intersections to be handled in times very close to the
uncompressed svs cost in the left-hand graph.

Disk traffic: One aspect of our experiments that is not completely faithful to the op-
erations of an information retrieval system is that we have not measured disk traffic as
part of the query cost. Figure 4 shows data transfer volumes plotted against query time,
in both cases averaged over the mix of 27,004 queries. The svs+bc+aux methods, us-
ing the auxiliary array, require only slightly more disk traffic than the fully-compressed
svs+bc approach, and execute in as little as half the time. The indexed compressed
methods are slower than the uncompressed svs+exp method, using exponential search,
but the latter involves more disk traffic. The bvc bitvector approach also provides a
surprising blend of data transfer economy (because most query terms are relatively
common in the collection) and query speed (because most queries are short). It may
be that hybrid approaches involving some terms stored as bitvectors and some using
byte codes are capable of even faster performance, and we plan to explore this option
next.
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Abstract. There is no known algorithm that solves the general case of
the Approximate Edit Distance problem, where the edit operations are:
insertion, deletion, mismatch, and swap, in time o(nm), where n is the
length of the text and m is the length of the pattern.

In the effort to study this problem, the edit operations were ana-
lyzed independently. Karloff [10] showed an algorithm that approxi-
mates the edit distance problem with only the mismatch operation in
time O( 1

ε2
n log3 m). Amir et. al. [3] showed that if the only edit op-

erations allowed are swap and mismatch, then the exact edit distance
problem can be solved in time O(n

√
m log m).

In this paper, we discuss the problem of approximate edit distance with
swap and mismatch. We show a randomized O( 1

ε3
n log n log3 m) time

algorithm for the problem. The algorithm guarantees an approximation
factor of (1 + ε) with probability of at least 1 − 1

n
.

1 Introduction

Approximate string matching is a widely studied area in computer science. In
approximate matching, one defines a distance metric between the objects (e.g.
strings, matrices) and seeks all text location where the pattern matches the text
by a pre-specified ”small” distance.

The earliest and best known distance functions are Levenshtein’s edit dis-
tance [13] and the Hamming distance. Let n be the text length and m the pattern
length. Lowrance and Wagner [14,15] proposed an O(nm) dynamic programming
algorithm for the extended edit distance problem. In [12] the first O(kn) algo-
rithm was given for the edit distance with only k allowed edit operations. Cole
and Hariharan [7] presented an O(nk4/m + n + m) algorithm for this problem.
To this moment, however, there is no known algorithm that solves the general
case of the extended edit distance problem in time o(nm).

Since the upper bound for the edit distance seems very tough to break, at-
tempts were made to consider the edit operations separately. If only mismatches
are counted for the distance metric, we get the Hamming distance, which defines
the string matching with mismatches problem. A great amount of work was done

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 149–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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on finding efficient algorithms for string matching with mismatches [1,11,5]. The
most efficient deterministic worst-case algorithm for finding the Hamming dis-
tance of the pattern at every text location runs in time O(n

√
m log m). Karloff

[10] presented an O( 1
ε2 n log3 m) time algorithm that approximates the Ham-

ming distance with a factor of 1 + ε. Attalah, Chyzak and Dumas [6] presented
a randomized algorithm for estimating the number of matches in each text lo-
cation in time O(kn log m) with variance of (m − ci)/k. Isolating the swap edit
operation yielded even better results [2,4], with a worst-case running time of
O(n log m logσ).

Amir, Eisenberg and Porat [3] faced the challenge of integration of the above
two results. Integration has proven tricky since various algorithms often involve
different techniques. For example, there are efficient algorithms for string match-
ing with don’t cares (e.g. [9]) and efficient algorithms for indexing exact matching
(e.g. [16]), both are over 30 years old. Yet there is no known efficient algorithm
for indexing with don’t cares. In fact, sometimes the integration of two efficiently
solvable operations ends up intractable. For example, Wagner [15] proves that
edit distance with the two operations: insertion and swap in NP-hard, while
each one separately can be solved in polynomial time and the general edit dis-
tance – consisting of the four operations insertion, deletion, mismatch and swap
– is also polynomially solvable.

In this context they [3] provided an efficient algorithm for edit distance with
two operations: mismatch and swap. Their algorithm runs in time O(n

√
m log m).

In this paper we discuss the problem of approximating the edit distance with
only swap and mismatch operations allowed. We think this result is essential
for a complete analysis of the ”swap and mismatch edit distance” problem. We
present an O(1

ε n logm) time algorithm for binary alphabet. For a small alpha-
bet, one can use the binary algorithm |Σ|2 times (consider each possible pair
of symbols seperately). In general alphabets we show that the problem can be
solved in O(1

ε n logn log3 m) independently of the size of the alphabet Σ. We
also show that the problem of (approximately) counting mismatches linearly re-
duces to (approximate) swap and mismatch edit distance. The current best time
algorithm for approximately counting mismatches runs in time O( 1

ε2 n log3 m)
[10].

The techniques used by the algorithm are novel cases of overlap matching and
convolutions as well as new bounded divide and conquer approach for alphabet
size reduction.

2 Problem Definition

Definition 1. Let S = s1 . . . sn be a string over alphabet Σ. An edit operation
E on S is a function E : Σn → Σm. Let S = s1 . . . sn and T = t1 . . . t� be
strings over alphabet Σ. Let OP be a set of local operations. OP is called the
set of edit operations. The edit distance of S and T is the minimum number
k such that there exist a sequence of k edit operations 〈E1, ..., Ek〉 for which
Ek(Ek−1(· · · E1(T ) · · ·) = S.
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Example. The Lowrance and Wagner edit operations are: {INSi,σ, DELi,
REPi,σ, and SWAPi}, where
INSi,σ(s1 . . . sn) = s1 . . . si, σ, si+1 . . . sn,
DELi(s1 . . . sn) = s1 . . . si−1, si+1 . . . sn,
REPi,σ(s1 . . . sn) = s1 . . . si−1, σsi+1 . . . sn, and
SWAPi(s1 . . . sn) = s1 . . . si−1, si+1, si, si+2 . . . sn.

Definition 2. Let T = t1 . . . tn be a text string, and P = p1 . . . pm be a pattern
string over alphabet Σ. The edit distance problem of P in T is that of computing,
for each i = 1, ..., n, the minimum edit distance of P and a prefix of ti . . . tn.

Lowrance and Wagner [14,15] give an O(nm) algorithm for computing the edit
distance problem with the above four edit operations. To date, no better algo-
rithm is known for the general case. We consider the following problem.

Definition 3. The swap and mismatch edit distance problem is the following.
INPUT: Text string T = t1 . . . tn and pattern string P = p1 . . . pm over alphabet Σ.
OUTPUT: For each i = 1, ..., n, compute the minimum edit distance of P and a
prefix of ti . . . tn, where the edit operations are {REPi,σ, SWAPi}.

The following observation plays a role in our algorithm.

Observation 1. Every swap operation can be viewed as two replacement oper-
ations.

2.1 Convolutions

Convolutions are used for filtering in signal processing and other applications. A
convolution uses two initial functions, t and p, to produce a third function t⊗ p.
We formally define a discrete convolution.

Definition 4. Let T be a function whose domain is {0, ..., n− 1} and P a func-
tion whose domain is {0, ..., m−1}. We may view T and P as arrays of numbers,
whose lengths are n and m, respectively. The discrete convolution of T and P is
the polynomial multiplication T ⊗ P , where:

(T ⊗ P )[j] =
m−1∑

i=0

T [j + i]P [i], j = 0, ..., n − m + 1.

In the general case, the convolution can be computed by using the Fast Fourier
Transform (FFT) [8] on T and PR, the reverse of P . This can be done in time
O(n log m), in a computational model with word size O(log m).

Important Property: The crucial property contributing to the usefulness of
convolutions is the following. For every fixed location j0 in T , we are, in essence,
overlaying P on T , starting at j0, i.e. P [0] corresponds to T [j0], P [1] to T [j0 +
1], ..., P [i] to T [j0 + i], ..., P [m − 1] to T [j0 + m − 1]. We multiply each element
of P by its corresponding element of T and add all m resulting products. This
is the convolution’s value at location j0.
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Clearly, computing the convolution’s value for every text location j, can
be done in time O(nm). The fortunate property of convolutions over alge-
braically close fields is that they can be computed for all n text locations in
time O(n log m) using the FFT.

In the next few sections we will be using this property of convolutions to
efficiently compute relations of patterns in texts. This will be done via linear
reductions to convolutions. In the definition below N represents the natural
numbers and R represents the real numbers.

Definition 5. Let P be a pattern of length m and T a text of length n over
some alphabet Σ. Let R(S1, S2) be a relation on strings of length m over Σ. We
say that the relation R holds between P and location j of T if R(P [0] · · ·P [m −
1], T [j]T [j + 1] · · ·T [j + m − 1]).

We say that R is linearly reduced to convolutions if there exist a natural
number c, a constant time computable function f : N c → {0, 1}, and linear time
functions �m

1 , ..., �m
c and rn

1 , ..., rn
c , ∀n, m ∈ N , where �m

i : Σm → Rm, rn
i :

Σn → Rn, i = 1, ..., c such that R holds between P and location j in T iff
f(�m

1 (P ) ⊗ rn
1 (T )[j], �m

2 (P ) ⊗ rn
2 (T )[j], ..., �m

c (P ) ⊗ rn
c (T )[j]) = 1.

Let R be a relation that is linearly reduced to convolutions. It follows imme-
diately from the definition that, using the FFT to compute the c convolutions,
it is possible to find all locations j in T where relation R holds in time O(n log m).

Example. Let Σ = {a, b} and R the equality relation. The locations where R
holds between P and T are the locations j where T [j+i] = P [i], i = 0, ..., m−1.
Fischer and Patterson [9] showed that it can be computed in time O(n log m) by
the following trivial reduction to convolutions.

Let �1 = χa, �2 = χb, r1 = χa, r2 = χb where

χσ(x) =
{

1, if x = σ;
0, otherwise. and χσ(x) =

{
1, if x 	= σ;
0, otherwise.

and where we extend the definition of the functions χσ to a strings in the usual
manner, i.e. for S = s1s2 . . . sn, χσ(S) = χσ(s1)χσ(s2) . . . χσ(sn).

Let
f(x, y) =

{ 1, if x = y = 0;
otherwise.

Then for every text location j, f(�1(P ) ⊗ r1(T )[j], �2(P ) ⊗ r2(T )[j]) = 0 iff
there is an exact matching of P at location j of T .

3 Algorithm for Binary Alphabets

For simplicity’s sake we solve the problem for binary alphabets Σ = {0, 1}. We
later show how to handle larger alphabets.

When considering a binary alphabet, a swap operation can be effective only
in the cases where the text has a pair 10 aligned with an 01 in the pattern,
or vice versa. Therefore, we are interested in analysing the case of alternating
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sequences of zeros and ones. We define this concept formally, since it is the key
to the algorithm’s idea.

An alternating segment of a string S ∈ {0, 1}∗ is a substring alternating
between 0s and 1s. A maximal alternating segment, or segment for short, is an
alternating segment such that the character to the left of the leftmost character
x in the alternating segment, if any, is identical to x, and similarly, the character
to the right of the rightmost character y, if any, is identical to y.

Any string over Σ = {0, 1} can be represented as a concatenation of segments.
We need to identify the cases where aligned text and pattern segments match
via swap operations only and the cases where replacements are also necessary.

We now show the key property necessary to reduce swap matching to overlap
matching. To this end we partition the text and pattern into segments.

Example. Let P = 101000111010100110100111010101.
P ’s segments are: 1010 0 01 1 101010 01 1010 01 1 101010.
The following lemma was proven at [2].

Lemma 1. The pattern does not (swap-) match in particular alignment if and
only if there exists a segment A in the text and a segment B in the pattern such
that: 1. The characters of A and B misalign in the overlap. 2. The overlap is of
odd-length.

The conditions of the above lemma are also useful for our problem.

Lemma 2. The number of mismatches that are not part of a swap, is exactly
the number of the overlaps that implement condition 1. and 2. of lemma 1.

Proof. We will examine all possibilities:

1. Condition 1. of the lemma does not hold. Then there is no misalignment of
the text. Indeed it matches the pattern.

2. Condition 1. holds but condition 2. does not. According to lemma 1 there is
a swap-match.

3. If the two conditions hold then either one of the two segments A and B
is entirely contained in the other or the overlap is a real substring of both
segments. For the first case we may assume, without loss of generality, that
segment B of the pattern is contained in segment A of the text (the other
case is treated in a similar fashion). The situation is that there is a misalign-
ment and the overlap length is odd. Schematically, we have (with B and A
boldfaced):
Pattern: · · ·aabab · · · ·abaa · ··
Text: · · ·ababa · · · ·baba · ··

Since swapping B′s edges will not help, the only swaps possible are internal
to B. This means that there is exactly one element that remains mismatched
after the swap.

The other situation is when the overlap is a real substring of both segments.
We assume that B starts before A (the other case is handled in a similar
fashion). The situation is:
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Pattern: abab · · · ·abaa · ··
Text: · bba · · · ·baba · ··

Again it is clear that the only possible swaps are internal to B, leaving one
element mismatched even after all possible swaps. 
�

The outline of our algorithm is as follows:

1. For every text location i, count the number of mismatches mi of the pattern
starting at location i using two convolutions as described in [9].

2. Partition the text and pattern into segments by parity of starting and ending
locations, and by length.

3. For every text location i, count the number ri of odd-length misaligned overlaps,
allowing an error of ±εmi. An odd-length misaligned overlap causes exactly one
”real” (non-swap) mismatch.

4. The approximate number of swap-errors at location i is si = (mi − ri)/2,
5. The approximate number of swap and mismatch edit errors at location i is ri+si.

3.1 Grouping Text Segments by Parity of Starting and Ending
Location

We follow some of the implementation ideas of [2]. However, there it was only
necessary to check existence of odd-length mismatched overlaps, and we need
to count them as well. The main idea we use is to separate the segments of the
text and pattern into a small number of groups. In each of these groups it will
be possible to count the required overlaps in time O(n

√
m logm) using a limited

divide-and-conquer scheme based on polynomial multiplications (convolutions).
In the subsections that follow we handle the different cases. Some of these cases
necessitate new and creative uses of convolutions.

For checking the parity of the overlap, we need to know whether a text segment
ends at an odd or even text location. Consequently, we define new texts where
each text has exactly those segments of a given start and end parity, with all
other text elements defined as φ (don’t care) which consequently never contribute
an error. (In the polynomial multiplication there will always be a 0 in these text
locations.) Henceforth, for short, we will talk of multiplying a text and pattern,
by which we mean a polynomial multiplication, where each of the text and
pattern is viewed as a vector of coefficients for the corresponding polynomials.

Definition. T oo is a string of length n where for every location i, if ti is in a
segment whose first element is in an odd location and whose last element is in an
odd location, T oo[i] = T [i]. In all other locations j, T oo[j] = φ. T ee is defined in
a similar fashion. We similarly define T oe and T eo, but for technical reasons we
need to further split these cases into T oe

1 , T oe
2 , T eo

1 and T eo
2 . T oe

1 contains all the
odds oe-segments (the first oe-segment, the third oe-segment, etc.). T oe

2 contains
all the even oe-segments (the second oe-segment, the forth oe-segment, etc.). We
similarly define T eo

1 and T eo
2 .

Example. T = 101000111010100110100111010101.
T segments are: 1010 0 01 1 101010 01 1010 01 1 1010101
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T oo = φφφφ1φφφφφφφφφφφφφφφφφ1φφφφφφφ
T ee = φφφφφφφ1φφφφφφφφφφφφφφφφφφφφφφ
T oe

1 = 1111φφφφφφφφφφ11φφφφ11φφφφφφφφ
T oe

2 = φφφφφφφφ111111φφ1111φφφφφφφφφφφφφφ
T eo

1 = φφφφφ11φφφφφφφφφφφφφφφφφφφφφφφφφφφ
T eo

2 = φφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφ

Note that the segments of T oo are exactly the segments of T that start and end
at an odd location.

3.2 Grouping the Pattern Segments

The pattern segments are defined in exactly the same way as the text segments
and we would like to group them in the same way. However, there is a difficulty
here in “nailing down” the parity of a location, since the pattern is shifted and
compared to every text location, i.e. the grouping of pattern segments needs to
be related to the text parity in order to measure the parity of overlap. However,
since the only property we have used in our grouping of text segments was the
parity of the text location, it is clear that in all the pattern alignments the
pattern segments that start in odd text locations are either all at odd pattern
locations or all at even pattern locations. Similarly, these parities will be the
same for all pattern alignments that start in even text locations.

We are now down to the combinations T ti,tj and P pi,pj . This gives us 16
cases. Many cases are similar, though, so we need to handle separately only the
following three types of cases:

1. T ti,tj and P pi,pj where either ti = pi or tj = pj. (This type covers 12 cases.)
These situations are handled in Section 4.

2. T ti,tj and P pi,pj where ti, tj = oe and pi, pj = eo; or where ti, tj = eo and
pi, pj = oe. These cases are handled in Section 5.

3. T ti,tj and P pi,pj where ti, tj = oo and pi, pj = ee; or where ti, tj = ee and
pi, pj = oo. These cases are handled in Section 6.

4 Segments with Equal Parity Start or End

Consider the case T ti,tj and P pi,pj where ti = pi.

Observation 2. For every two segments, St in T ti,tj, starting at location x,
and Sp in P pi,pj, starting at location y, |x − y| is always even.

We are interested in the number of odd overlaps. We now show a convolution for
which the resulting value at location i is n exactly if there is n odd-length overlaps
with the pattern starting at location i. (The convolutionwith T eo (or T oe,P eo,P oe)
we need to do two convolutions, the first with T eo

1 , and the second with T eo
2 ).

The Convolution: Pattern P ′ = p′1 · · · p′m is constructed as follows:

p′i =
{

0, if P pi,pj [i] = φ;
1, otherwise.

.
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even
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St1

o o

o

o

o

Fig. 1. The cases of both text and pattern segments starting in locations with the same
parity

Text T ′ = t′1 · · · t′n is constructed by replacing every φ in T ti,tj by 0, and every
segment in T ti,tj by a segment of alternating 1s and −1s, starting with 1. Then
P ′ and T ′ are convolved.

Lemma 3. Let (T ′ ⊗ P ′)[q] be the qth element in the result of the convolution.
(T ′ ⊗ P ′)[q] is equal to the number of odd overlaps of the relevant text segments
and relevant pattern segments.

Proof. This follows from the definitions of convolutions, of T ′, and of P ′ and
from the observation that for all cases where the starting location of a pattern
segment is smaller than the starting location of a text segment and the pair
overlaps the contribution to the result of the convolution will be 1 if the length
of the overlap is odd and 0 if it is even (since every text segment starts with
a 1 and then alternates between −1 and 1). Because of Observation 2, even
when the text segment starts at a smaller location than the pattern segment,
the difference between the starting locations has even length. Therefore in the
area of the overlap, the text starts with a 1 and alternates between −1 and 1.
Thus the convolution gives us the desired result. 
�
Locations where (T ′ ⊗ P ′)[q] = 0 are locations without odd-overlap between
relevant text and pattern segments.

This solves all eight cases of T ti,tj and P pi,pj where ti = pi. For the additional
four cases where tj = pj we simply reverse the text and pattern to obtain the
case considered above.

Note that this gives us the exact number of odd-length misaligned overlaps of
segments with equal parity start or end.

5 The Odd-Even Even-Odd Segments

Consider the case T oe
1or2 and P eo

1or2 (the case of T eo
1or2 and P oe

1or2 is symmetric).

Terminology. Let St be a text segment whose starting location is st and whose
ending location is ft. Let Sp be a pattern segment being compared to the text
at starting position sp and ending position fp. If st < sp < fp < ft then
we say that St contains Sp. If sp < st < ft < fp then we say that Sp contains
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St. If st < sp < ft < fp then we say that St has a left overlap with Sp. If
sp < st < fp < ft then we say that St has a right overlap with Sp. We will
sometimes refer to a left or right overlap as a side overlap.

Observation 3. For every two segments, St in T oe
1or2 and Sp in P eo

1or2 if either
Sp is contained in St or St is contained in Sp then the overlap is of even length.
If the overlap is a left overlap or right overlap then it is of odd length. All possible
cases are shown in figure 2 below.

e

o e e

e

o o

o

o

even

e

odd even odd

Fig. 2. The cases where the text segment starts at an odd location and ends at an even
location, and the pattern segment does the opposite

The correctness of the observation is immediate. Segments of these types have
even length. Thus, if one contains the other the overlap is necessarily of even
length. Conversely, in case of a left or right overlap, which we call side overlaps,
the overlap starting and ending locations have the same parity, making the length
of the overlap odd. Remember our desire is to count all locations where there
are segments which have odd overlap.

5.1 Grouping Text and Pattern Segments by Length

In addition to grouping the text and pattern segments by parity of their starting
and ending indexes, we will also group them by their length. We will need the
grouping by length for the convolutions presented in the next subsection.

Definition. For every length l we will define T oo,l to be the string of length n
where for every location i if ti is in a segment of length l which starts and ends
in an odd location, T oo,l[i] = 1. In all other locations j, T oo,l[j] = φ.

We will also define T oo,≤l (T oo,>l) to be the string of length n where for every
location i if ti is in a segment of length ≤ l (> l) which starts and ends in an
odd location, T oo,l[i] = 1. In all other locations j, T oo,≤l[j] = φ (T oo,>l[j] = φ).

T ee,l, T ee,≤l and T ee,>l are defined in a similar fashion. We similarly define
T ti,tj ,l, T ti,tj ,≤l and T ti,tj ,>l for ti 	= tj but as before we will split these cases
into T

ti,tj,l
α , T

ti,tj ,≤l
α and T

ti,tj ,>l
α for α ∈ {1, 2}.

As before, we will use convolutions. The desired property for such a convolution
is as follows.
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5.2 The Convolutions for the Odd-Even Even-Odd Segments Case

As we said earlier, for counting the ’real’ mismatches in this case it is enough to
count all side (left or right) overlaps. For that, we use the following convolutions:

Convolution 1. The Pattern P ′ = p′1 · · · p′m is constructed as follows:

p′i =
{

0, if P pi,pj [i] = φ;
1, otherwise.

.

Text T ′ = t′1 · · · t′n is constructed by replacing every φ in T ti,tj by 0, and first
and last place in every segment in T by 1, all the other places by 0.

Note that for every two segments, St in T oe
1or2 and Sp in P eo

1or2 if the overlap is
a left overlap or a right overlap then it will add exactly 1 to the convolution. If
Sp is contained in St, it will add 0 to the convolution. However, if St is contained
in Sp, it will add 2 to the convolution.

In order to avoid the latter case, we will treat different lengths of text and
pattern segments separately. This convolution will be used for all cases where
the length of the text segments is equal or greater than the length of the pattern
segments. For the cases where the pattern segments are longer than the text
segments, we will use the following convolution:

Convolution 2. The Text T ′ = t′1 · · · t′n is constructed as follows:

t′i =
{

0, if T ti,tj [i] = φ;
1, otherwise.

.

Pattern P ′ = p′1 · · · p′m is constructed by replacing every φ in P pi,pj by 0, and
first and last place in every segment in P by 1, all the other places by 0.

Like in convolution 1, for every two segments, St in T oe
1or2 and Sp in P eo

1or2 if
the overlap is a left overlap or a right overlap then it will add exactly 1 to the
convolution. However, using this convolution, if St is contained in Sp, it will add
0 to the convolution, and if Sp is contained in St, it will add 2 to the convolution.
Therefore, this convolution can be used to handle the cases where the length of
the pattern segments is greater than the length of the text segments.

Using these convolutions for counting the exact number of real mismatches will
require treating every length of pattern segments separately. Alas, this might take
up to O(

√
m) convolutions, and so in order decrease the number of convolutions,

we will group all segments of length 4
ε or longer and treat them as one length.

We will notate T L
1or2 = T

oe,≥ 4
ε

1or2 , and similarly PL
1or2 = P

eo,≥ 4
ε

1or2 .
For each length l < L we will use convolution 1 to count real mismatches

between T oe,l
1or2 and P eo,≤l

1or2 . Since we are comparing text segments only to shorter
pattern segments, convolution 1 counts the exact number of mismatches. Also,
we will use convolution 2 to count real mismatches between T oe,<l

1or2 and P eo,l
1or2.

The total number of convolutions for this part is at most 8
ε .

In addition, we will use convolution 1 once to count all real mismatches be-
tween T oe,L

1or2 and P eo,<L
1or2 , and convolution 2 once for counting all real mismatches

between T oe,<L
1or2 and P eo,L

1or2 .
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Finally, we will use convolution 1 once more to count all real mismatches
between T oe,L

1or2 and P eo,L
1or2 . This convolution will count 2 mismatches for every

occurrence where St is contained in Sp, but note that every such overlap (which
is at least 4

ε characters long) has at least 2
ε swap errors, so the mistake when

counting swap and mismatch errors will be at most ε.

6 The Odd-Odd Even-Even Segments

Consider the case T oo and P ee (the case T ee and P oo is symmetric).

Observation 4. For every two segments, St in T oo and Sp in P ee if either Sp

is contained in St or St is contained in Sp then the overlap is of odd length. If
the overlap is a left overlap or right overlap then it is of even length. All possible
cases are shown in figure 3 below.

e

o o o

o

o o

o
even

odd

evenodd

e

o

Fig. 3. Every containment has odd length; every side overlap has even length

The correctness of the observation is immediate. Segments of these types have
odd lengths, thus if one contains the other then the overlap is necessarily of odd
length. Conversely, in case of a left or right overlap, the overlap starting and
ending locations have opposite parity, making the length of the overlap even.

6.1 The Convolutions for the Odd-Odd Even-Even Segments Case

The Convolution. Text T ′ = t′1 · · · t′n is constructed as follows:

t′i =
{

0, if T ti,tj [i] = φ;
1, otherwise.

.

Pattern P ′ = p′1 · · · p′m is constructed by replacing every φ in P pi,pj by 0, and
every segment in P pi,pj by a segment of alternating 1s and −1s, starting with 1.
Then P ′ and T ′ are convolved.

Note that for every two segments, St in T oo and Sp in P ee if the overlap is a
left overlap or a right overlap then it will add exactly 0 to the convolution. If Sp

is contained in St, it will add 1 to the convolution. However, if St is contained
in Sp, it will add −1 to the convolution.
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In order to avoid miscalculations caused by some of the mismatches contribut-
ing 1 to the sum while others are contributing −1 to the sum, we will, like in
the Odd-Even Even-Odd case, treat different sizes of text and pattern segments
separately. In this case, we will notate T L = T oo,≥2

ε , and similarly PL = P ee,≥ 2
ε .

For each length l < L we will use our convolution to count real mismatches
between T oo,l and P ee,≤l. Since we are comparing text segments only to shorter
pattern segments, our convolution counts the exact number of mismatches. Also,
we will use our convolution to count real mismatches between T oo,<l and P ee,l

(we will get a negative total, and take its absolute value). The total number of
convolutions for this part is at most 4

ε .
In addition, we will use this convolution once to count all real mismatches

between T oo,L and P ee,<L, and again for counting all real mismatches between
T oo,<L and P ee,L (taking the absolute value of the result, like before).

Note that we are not doing the convolution for the case where the text and
pattern segments are longer than 2

ε . Is this case, real mismatches only occur
in cases where text segments are contained in pattern segments (or vice versa),
and since all such segments are of length of at least 2

ε characters, they are
already contributing 1

ε swap errors (in addition to the 1 real mismatch that we
overlooked). So the relative mistake when counting swap and mismatch errors
will be at most ε.

7 Approximate Solution for General Alphabet

First, we note that in the general alphabet case, every two different symbols that
appear in adjacent places somewhere in the pattern define a different segment
type. To reduce the number of segment types we handle, we will project the seg-
ment types set into a smaller set of size 1

ε . Once the number of different segment
types is bounded, we can use the binary algorithm for each type separately and
sum up the results.

Let S ⊆ Σ × Σ be the set of different segment types in the pattern, Where a
segment type determined only by the alternating two symbols. Note that |S| ≤
m. We can construct an algorithm that approximates the swap mismatch edit
distance in O(|S|f(n, m, ε) + mis(n, m, ε)) Where f(n, m, ε) is the time needed
to (1 + ε)-approximation of the binary alphabet swap and mismatch problem
and mis(n, m, ε) is the time needed to approximate counting mismatches. The
algorithm will work as follows:

Few Segment Types Algorithm:

1. For every text location i = 1, . . . , n−m+1, approximately count the number
of mismatches Mi of the pattern starting at location i [10].

2. For each segment type (σ1, σ2)
(a) Replace all the symbols in segments of other types with a φ symbol.
(b) Compute si the number of swap errors with segment type (σ1, σ2) for

every text location i = 1, . . . , n − m + 1, using the algorithm for the
binary alphabet case.
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(c) Add si to Si For every i = 1, . . . , n − m + 1.
3. The approximate swap mismatch edit distance at location i is Mi − Si.

Lemma 4. The algorithm (1+ε)-approximates the swap mismatch edit distance
and works in time O(|S| 1ε n log m + 1

ε2 n log3 m).

Proof. The inexact parts of this algorithm are the first step of counting mis-
matches and the use of the binary alphabet case algorithm. Both are guaranteed
to have (1 + ε) approximation factor and approximation is kept under addition
operations. We now discuss the time needed for each step. The first step is done
using Karloff’s algorithm in O( 1

ε2 n log3 m). For each segment type computing si’s
can be done by counting the number of mismatches using convolutions (since
there are only two symbols, this can be done in O(n log m) time) and running
the algorithm for binary alphabet case which takes O(1

ε n logm).

Observation 5. Every pair of segments (in the text and in the pattern) that
caused swap mistakes before the projection, will also cause swap mistakes after
the projection. Pairs of segments that caused mismatch mistakes before the pro-
jection might cause mismatch mistakes or swap mistakes after the projection. For
a given pair, the probability of the projection changing the type of the mistakes
caused by that pair from mismatch mistakes to swap mistakes, is ε.

The correctness of the observation is immediate, since every pair of segment
types that caused swap mistakes before the projection, must have been a pair of
two identical segment types. Therefore, such pair will be projected to a pair of
two identical segment types and will continue to cause swap mistakes after the
projection. Pairs of segment types that caused a mismatch mistake must have
been a pair of two different segment types; The probability of such a pair to be
projected to a pair of two identical segment types is exactly ε.

Many Segment Types Algorithm:

1. Randomly choose 1
ε log n projections Πj : S → S′ where |S′| = 1

ε .
2. For each Πj Replace segments according to Πj and approximately count

swap and mismatch errors using the algorithm for few segment types.
3. Compute approximate swap and mismatch edit distance by taking the aver-

age between the different results.

Lemma 5. The above algorithm correctly (1 + ε)-approximates the swap and
mismatch edit distance with error probability less than 1

n3 .

Proof. Using observation 5 we have that the swap errors before the projection
are necessarily swap errors after the projections. Furthermore, other mismatch
errors have the probability of less than ε to change to either matches or swap
errors. We use 1

ε log n independent projections. Using Chernoff inequality we get
that the probability that in more than 5 logn projections a specific error will
change is less than 1

n5 . Pr[X > 5 log n] ≤ ( e4

(5)5 )log n < 1
n5 .
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The above probability is for a specific location and error. Using union bound
we get a total error probability of at most 1

n3 . 5 logn is a 5ε fraction of 1
ε log n

projections, taking ε′ = ε/5 yields the desired approximation ratio.

Time complexity. For each projection we need O( 1
ε2 n log3 m) time. In total

our algorithm works in O( 1
ε3 n log n log3 m) time complexity.

8 Reduction from Mismatch to Swap and Mismatch

Theorem 1. Let Asm be an algorithm that solves the problem of swap and mis-
match running in time O(f(n)). Then there is an algorithm Am that solves
mismatch in time O(n + f(n)).

Proof. Let T = t1, t2, . . . , tn be a text, and P = p1, p2, . . . , pn be a pattern
over alphabet Σ. We want to find the Hamming distance (i.e. the number of
mismatches) between the pattern and every location in the text. Let ψ /∈ Σ and
define T ′ = t1, ψ, t2, ψ, . . . , ψ, tn. In other words, T ′ is T with ψ inserted between
every two adjacent characters of the original text T . Define P ′ the same way.
Run the algorithm Asm on T ′ and P ′ and return the result of the odd locations.

Observation. All the mistakes that Asm finds are mismatches. This is true
since between every two characters there is a ψ character which does not appear
in Σ so it is impossible to have a swap. The additional ψs don’t contribute any
additional mismatches, since each ψ in the pattern is aligned with a ψ in the
text when we consider only odd locations. 
�
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Abstract. The problem of finding the longest common subsequence
(LCS) of two given strings A and B is a well-studied problem. The Con-
strained longest common subsequence (C-LCS) for three strings A, B
and C is the longest common subsequence of A and B that contains C as
a subsequence. The fastest algorithm solving the C-LCS problem has a
time complexity of O(mnk) where m, n and k are the lengths of A, B and
C respectively. We propose to consider the approximate version of the
LCS and the Constrained LCS. For LCS we propose a simple linear time
approximation algorithm that yields an approximation ratio of 1

|Σ| . For
C-LCS we obtain the first two approximation algorithms. Our first algo-
rithm has an approximation factor of 1√

min(m,n)
with an O(mn) running

time, while the second algorithm yields a 1√
min(m,n)|Σ|

approximation

factor within a running time of O(m + n).

1 Introduction

The problem of finding the longest common subsequence (LCS) of two given
strings A and B is a well-studied problem, see [2,5,6,9]. The constrained longest
common subsequence (C-LCS) for three strings A, B and C is the longest com-
mon subsequence of A and B that contains C as a subsequence. Tsai [8] gave
a dynamic programming algorithm for the problem which runs in O(n2m2k)
where m, n and k are the lengths of A, B and C respectively. Improved dynamic
programming algorithms were proposed in [1,3] which run in time O(nmk).

Many problems in pattern matching are solved with dynamic programming
solutions. Among the most prominent of these is the LCS problem. These so-
lutions are elegant and simple, yet usually their running times are quadratic
or more. It is a desireable goal to find algorithms which offer faster running
times. One slight improvement, a reduction of a log factor, is the use of the
Four-Russians trick, see [7]. However, in general, faster algorithms have proven
to be rather elusive over the years (and perhaps it is indeed impossible).

To circumvent the NP-completeness of many natural, real-life problems, ap-
proximation algorithms have been suggested for many problems. Of course, the
desire in this case is to provide some polynomial-time algorithm. When it comes
to problems which have a polynomial time algorithm it only makes sense to
suggest an approximation algorithm if the time is faster than the deterministic
algorithm.

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 164–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We propose to consider the approximate version of the LCS and the Con-
strained LCS. We believe this is an important venue of research that can shed
light on many of the problems in pattern matching which suffer quadratic (or
higher) running times.

In this paper, we propose a simple linear time approximation algorithm for
LCS that yields an approximation ratio of 1

|Σ| . For C-LCS we obtain the first
two approximation algorithms. Our first algorithm has an approximation factor
of 1√

min(m,n)
with an O(mn) running time, while the second algorithm yields a

1√
min(m,n)|Σ| approximation factor within a running time of O(m + n).

2 Preliminaries

Let A = 〈a1, a2, . . . , am〉, B = 〈b1, b2, . . . , bn〉 and C = 〈c1, c2, . . . , ck〉 be three
strings. The LCS problem for two strings is finding their common subsequence
of maximal length. The longest constrained subsequence (C-LCS, for short) of
A, B and C is the longest common subsequence of A and B that contains C as
a subsequence. First we define the approximation version of the LCS as follows:
Let OPTlcs be the optimal solution for the LCS problem and APPlcs the result
of an approximation algorithm such that APPlcs is a common subsequence of
A and B. The approximation factor of an algorithm APP will be the smallest
ratio between |APPlcs| and |OPTlcs| over all possible input strings A, B and
C. Similarly we define the approximation version of the C-LCS as follows: let
OPTclcs be the optimal solution for the C-LCS problem and APPclcs the result
of an approximation algorithm such that:

- APPclcs is a common subsequence of A and B.
- C is a subsequence of APPclcs.

The approximation factor of an algorithm APP will be the smallest ratio be-
tween |APPclcs| and |OPTclcs| over all possible input strings A, B and C.

2.1 Approximating LCS

In order to approximate the classical LCS problem, we propose the following
simple linear time algorithm that yields an approximation factor of 1

|Σ| , which
will be used later on for approximating the C-LCS problem.

Algorithm 1. LCS approximation algorithm

for every s ∈ Σ do1

OccA(s) ← number of occurrences of s ∈ A;2

OccB(s) ← number of occurrences of s ∈ B;3

for every s ∈ Σ do Occ(s) ← min(OccA(s), OccB(s))4

find the s ∈ Σ with maximal Occ(s) and return sOcc(s);5
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The following observation in regards to Algorithm 1 is easy to prove.

Observation 1. Given two strings A and B over alphabet Σ, Algorithm 1 finds
a common subsequence (of A and B) of length ≥ min(m,n)

|Σ| ≥ |OPTlcs|
|Σ| .

3 Approximating Constrained LCS

In this section we present two approximation algorithms for the constrained LCS
problem. First, we give a couple of definitions that are necessary to understand
both algorithms.

Let S be a string. Denote with S[i, j] the substring of S that starts at location
i and ends at location j .

Denote with start(a, i) and end(a, i) the leftmost and rightmost locations in
A such that c1, c2, . . . ., ci is a subsequence of A[1, start(a, i)] and ci, ci+1, . . . ., ck

is a subsequence of A[end(a, i), m] (the same holds for start(b, i) and end(b, i)).
See figure 1. Recall that m, n and k are the lengths of A, B and C respectively.

ca ad bb a d d b cc

b bc a d d c a bb d aB

C

end(1)

end(3)

A

start(3)start(2)

start(1) start(2) start(3)

start(1)

end(1) end(2)

end(2) end(3)

c b a

Fig. 1. An example of start(i) and end(i)

Let OPT be an optimal C-LCS solution. By definition, C must be a subse-
quence of OPT . Choose an arbitrary subsequence C of OPT and denote with
p1, p2, . . . , pk the positions of c1, c2, . . . ., ck in OPT (there may be many possi-
ble subsequences of C in OPT ). We say that the positions p1, p2, . . . , pk are an
assignment of C over OPT .

The following Lemma and Corollary are instrumental in achieving our ap-
proximation algorithms.

Lemma 1. Let k be the length of C and OPT the optimal C-LCS, then for any
assignment of C over OPT and for every 1 ≤ i ≤ k − 1 the following statement
holds:

|LCS(A[start(a, i) + 1, end(a, i + 1) − 1],B[start(b, i) + 1, end(b, i + 1) − 1])| ≥
|OPT [pi + 1, pi+1 − 1]|.

Proof: Let us assume there is an assignment of C over OPT such that:

|LCS(A[start(a, i) + 1, end(a, i + 1) − 1],B[start(b, i) + 1, end(b, i + 1) − 1])| <
|OPT [pi + 1, p(i+1) − 1]|. Note that OPT [pi + 1, p(i+1) − 1] must be a common
subsequence of two substrings of A and B, moreover those substrings must start
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at a location ≥ start(a, i) + 1 and end at a location ≤ end(a, i + 1) − 1 (the
same must hold for B). This contradicts the fact that the LCS of two substrings
cannot be longer than the LCS of the original strings. ��
The next corollary follows from Lemma 1

Corollary 1. Let k be the length of C and OPT the optimal C-LCS, then we
can get a 1

k -approximation algorithm for the C-LCS.

Proof: Choosing the maximal LCS of A[start(a, i) + 1, end(a, i + 1) − 1] and
B[start(b, i) + 1, end(b, i + 1) − 1] over 1 ≤ i ≤ k − 1 then by Lemma 1 we get a
C-LCS of size 1

k |OPT |. ��

3.1 An O(mn) Time Approximation

In this section we show a
√

min(m, n)-approximation algorithm with an O(mn)
running time. The motivation of this algorithm is derived from Corollary 1. We
simply compute the exact LCS between A[start(a, i) + 1, end(a, i + 1) − 1] and
B[start(b, i)+1, end(b, i+1)−1] (for 1 ≤ i ≤ k−1) using a dynamic method for
updating LCS presented by Landau, Myers and Schmidt [4]. Given two strings A
and B, let D be the traditional LCS dynamic programming matrix of A and B.
By using the method of Landau, Myers and Schmidt we can compute in O(|A|)
time D′, the dynamic programming matrix for the LCS of A and bB, where b is
a single symbol.

Our algorithm has two cases:

1) k ≥
√

min(m, n).
2) k <

√
min(m, n).

Observation 2. If k ≥
√

min(m, n) then any valid solution for the C-LCS

problem yields an approximation factor of:
√

min(m,n)

min(m,n) = 1√
min(m,n)

.

Proof: Since C must be a subsequence of the C-LCS, if k ≥
√

min(m, n) then
the length of any valid solution must be ≥

√
min(m, n). Therefore, using an

approximation algorithm which simply returns C, we achieve an approximation

factor of:
√

min(m,n)

min(m,n) = 1√
min(m,n)

. ��

If k <
√

min(m, n) then we find a solution of length ≥ |OPT |√
min(m,n)

. Thus, through-

out this section we assume k <
√

min(m, n).
Our algorithm works as follows. First we compute the LCS of A[a1, end(a, 1)−

1]R and B[b1, end(b, 1)−1]R then we scan both strings while dynamically updating
the LCS matrix. We compare the lengths of the LCS of: A[start(a, i), end(a, i +
1)]R and B[start(b, i), end(b, i + 1)]R for every 1 ≤ i ≤ k − 1 .

The algorithm performs one search of A and B (from left to right) using two
pointers LocAStart and LocAEnd initialized with LocAStart = 1 and LocAEnd
= end(a, 1) − 1 (symmetrically for B).
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For every character we read, we update the LCS matrix of the reverse strings
i.e. adding a character at the beginning of A or B. For every removed character
we simply update the LCS matrix by deleting the last row or column.

See Algorithm 2 for a full description.

Algorithm 2. O(mn) Time Approximation Algorithm

if k ≥
√

min(m, n) then return C and quit;1

tmpLCS ← LCS of 〈a1, . . . , end(a, 1) − 1〉R and 〈b1, . . . , end(b, 1) − 1〉R;2

length ← length(tmpLCS) ;3

cLoc ← 0;4

for i ← 1 to k − 1 do5

while LocAEnd �= end(a, i) − 1 do read character of A and update the LCS6

matrix;
while LocAStart �= start(a, i) + 1 do remove character of A and update the7

LCS matrix;
while LocBEnd �= end(b, i) − 1 do read character of B and update the LCS8

matrix;
while LocBStart �= start(b, i) + 1 do remove character of B and update the9

LCS matrix;
if length(currentLCS) > length then10

tmpLCS ← currentLCS;11

length ← length(currentLCS);12

cLoc ← i;13

while LocAEnd �= am do read character of A and update the LCS matrix;14

while LocAStart �= start(a, k) + 1 do remove character of A and update the15

LCS matrix;
while LocBEnd �= bn do read character of B and update the LCS matrix;16

while LocBStart �= start(b, k) + 1 do remove character of B and update the17

LCS matrix;
if length(currentLCS) > length then18

tmpLCS ← currentLCS;19

cLoc ← k;20

return 〈c1, . . . , ccLoc〉 · 〈tmpLCS〉 · 〈ccLoc+1, . . . ., ck〉;21

Time and Correctness Analysis:
Let S be the output string of the algorithm. S fulfills the following conditions:

1) S is a common subsequence of A and B (while assuming C is a subsequence
of both A and B).
2) S contains C as a subsequence (this happens either in the first step or in the
step number 21).

The running time is O(mn), since the first computation of the LCS takes O(mn)
and we perform no more than an additional 2(m+n) update operations (we insert
and remove every character exactly once). Every update operation is done in a
linear running time. Hence, the total running time is O(mn).
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Lemma 2. The approximation ratio of the Algorithm 2 is 1√
min(m,n)

.

Proof: If our algorithm stops at the first line then the length of the output
≥

√
min(m, n). Moreover, |OPT | must be ≤

√
min(m, n). Therefore, the ap-

proximation ratio is at least:
√

min(m,n)

min(m,n) = 1√
min(m,n)

.

If our algorithm stops at the 21st line then k <
√

min(m, n). Say OPT consists
of the following parts: OPT [1, p1 −1], OPTP1, OPT [p1 +1, p2 −1], OPTP2, OPT
[p2 + 1, p3 − 1], . . . , OPT [pk + 1, pl]. Let OPT [pj + 1, pj+1] be the part with the
maximal length over all 0 ≤ i ≤ k + 1 (denote p0 as opt1 and pk+1 as optl only for
the scope of this proof).

According to Lemma 1, |OPT [pj +1, pj+1 −1]| ≤ |LCS(A[start(a, j)+1, end
(a, j + 1) − 1)], B[start(b, j) + 1, end(b, j + 1) − 1])|. Moreover the length of the
C-LCS our algorithm returns in the 21st line

≥ |LCS(A[start(a, j) + 1, end(a, j + 1) − 1], (1)
B[start(b, j) + 1, end(b, j + 1) − 1])| (2)

≥ |OPT [pj + 1, pj+1 − 1]| (3)

≥ |OPT |
k + 1

(4)

≥ |OPT |
√

min(m, n)
. (5)

Therefore, the approximation ratio of our algorithm is at least: 1√
min(m,n)

. ��

3.2 A Linear Time Approximation

In this section we present a linear time approximation algorithm for the C-
LCS problem, which yields an approximation factor of 1√

min(m,n)|Σ| . During this

algorithm we use the above mentioned Algorithm 1. Our goal is to find a linear
time approximation algorithm with approximation factor as close as possible to
the one presented in the previous section.

Recall that we desire to compute compute the LCS ofA[start(a, i)+1, end(a, i+
1) − 1] and B[start(b, i) + 1, end(b, i + 1) − 1]. However, since we are looking for
a linear time algorithm, it is clear that we cannot compute the LCS even for a
specific i, since the LCS computation may cost us O(mn) running time.

Therefore, we want to use Algorithm 1 to approximate the LCS of those
sections (1 ≤ i ≤ k). However, if we perform

√
min(m,n)

|Σ| iterations (1 ≤ i ≤ k)

of Algorithm 1 we can still get a running time of O(min(m, n)1.5). Therefore, we
use a more efficient method in order to find a 1

|Σ| approximation for the LCS
problem. Our method is similar to counting sort and works as follows:

Our first goal is to find the maximal approximated LCS of A[ai +1, end(a, i+
1) − 1] and B[bi + 1, end(b, i + 1) − 1] (1 ≤ i ≤ k − 1). Afterwards we set this
maximal approximate LCS in its appropriate position in C and then return
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it as an approximate C-LCS. In order to do so in linear time, we maintain a
sorted array of number of occurrences of every symbol ∈ Σ, since the number
of occurrences of every symbol must be ≤ min(m, n) we can simply maintain all
the needed information in linear time and space. The algorithm performs one
search of A and B using two pointers such that insertion and deletion operations
are done exactly twice for every character.

Our algorithm has two cases:

1) k ≥
√

min(m,n)
|Σ| .

2) k <
√

min(m,n)
|Σ| .

If k ≥
√

min(m,n)
|Σ| then similarly to observation 2 any valid solution for the

C-LCS problem must yield an approximation factor of 1√
min(m,n)|Σ| .

If k <
√

min(m,n)
|Σ| then we find a solution of length ≥ |OPT|√

min(m,n)|Σ| .

Thus, throughout this section we assume k <
√

min(m,n)
|Σ| .

See Algorithm 3 for a full description.

During the algorithm we use the following definitions: for every σ ∈ Σ, denote
with CA(σ, i, j) the number of σ’s in A[i, j] (the same for CB(σ, i, j)). Moreover,
l[i, j, p, q](σ) = min(CA(σ, i, j),CB(σ, p, q)) and l∗(i, j, p, q) = maxm[i, j, p, q](σ).

With the use of CA(σ, i, j), CB(σ, i, j) and some additional tables, the follow-
ing lemma can be straightforwardly be seen to be true.

Lemma 3. l∗(i + 1, j, p, q), l∗(i, j + 1, p, q), l∗(i, j, p + 1, q) and l∗(i, j, p, q + 1)
can be computed from l∗(i, j, p, q) in O(1) time, given O(n) space.

Similar to the previous algorithm, we perform one search of A and B from left
to right (can be done using two pointers for every string).

Time and Correctness Analysis: Let S be the output string of the algorithm. S
fulfill both conditions:

1) S is common subsequence of A and B (where C is a subsequence of both A
and B).
2) S contains C as a subsequence (see either first step or step number 23).

The running time is O(m+n), since the computation of l∗(1, end(a, 1)−1, 1, end
(b, 1)−1) takes O(m+n) and we perform no more than additional 2(m+n) update
operations (we insert and delete every character exactly once). According to
Lemma 3 every update operation is done in O(1) time then the total running
time remains linear.

Lemma 4. The approximation ratio of the Linear Time C-LCS Approximation
Algorithm is 1√

min(m,n)|Σ| .
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Algorithm 3. Linear Time Approximation Algorithm

if k ≥
√

min(m,n)
|Σ| then return C and quit;1

compute l∗(1, end(a, 1) − 1, 1, end(b, 1) − 1)2

set: Symbol ← MaxSym;3

Occ ← MaxOcc;4

cLoc ← 0;5

for i ← 1 to k − 1 do6

compute l∗(start(a, i) + 1, end(a, i + 1) − 1, start(b, i) + 1, end(b, i + 1) − 1)7

if MaxOcc > Occ then8

Symbol ← MaxSym;9

Occ ← MaxOcc;10

cLoc ← i;11

compute l∗(start(a, k) + 1, m, start(b, k) + 1, n)12

if MaxOcc > Occ then13

Symbol ← MaxSym;14

Occ ← MaxOcc;15

cLoc ← k;16

return C[c1, ccLoc] · 〈SymbolOcc〉 · C[ccLoc+1, ck];17

Proof: If our algorithm stops at the first line then the length of the output

≥
√

min(m,n)
|Σ| . Moreover |OPT | must be ≤

√
min(m, n). Therefore, the approx-

imation ratio is at least:

�
min(m,n)

|Σ|
min(m,n) = 1√

min(m,n)|Σ| .

If our algorithm stops at the 23rd line then k <
√

min(m,n)
|Σ| .

OPT consists of the following parts: OPT [1, p1−1], OPTP1, OPT [p1 +1, p2−
1], OPTP2, OPT [p2 +1, p3−1], . . . , OPT [pk +1, pl]. Let OPT [pi +1, pi+1] be the
part with the maximal length over all 0 ≤ i ≤ k +1 (denote p0 as opt1 and pk+1

as optl only for the scope of this proof).
According to Lemma 1, |OPT [pj + 1, p(j + 1) − 1]| ≤ |LCS(A[start(a, j) +

1, end(a, j + 1) − 1],B[start(b, j) + 1, end(b, j + 1) − 1])|. Moreover the length of
the C-LCS our algorithm returns in the 23rd line

≥ 1
|Σ| |LCS(A[start(a, j) + 1, end(a, j + 1) − 1], (6)

B[start(b, j) + 1, end(b, j + 1) − 1])| (7)

≥ 1
|Σ| |OPT [pj + 1, pj+1 − 1]| (8)

≥ 1
|Σ|

|OPT |
k + 1

(9)

≥ 1
|Σ|

|OPT |
√

min(m,n)
|Σ|

(10)
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=
|OPT |

√
min(m, n)|Σ|

(11)

Therefore, the approximation ratio of our algorithm is at least: 1√
min(m,n)|Σ| . ��

4 Open Questions

In our opinion a central question is whether it is possible to find a linear time
algorithm approximate the classical LCS problem with an approximation factor
better than 1

|Σ| . Moreover, one may ask whether there are better approximation
algorithms for the C-LCS problem, which improves either the approximation
factors or the running times.

Moreover, an interesting question raised is regarding the more general variant
in which there are more than two strings or more than one constraint.
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Abstract. Recently a new variation of approximate Boyer-Moore string
matching was presented for the k-mismatch problem. This variation was
developed for gene sequences. We further tuned this algorithm gaining
speedups in both preprocessing and search times. Our preprocessing has
lower time complexity than the previous algorithm and our experiments
show that our algorithm is over 30% faster than the previous one. We
also present two variations of the algorithm for the k-difference problem.

1 Introduction

We consider two variations of approximate string matching, the k-mismatch
problem and the k-difference problem. In both of the problems, we have a pattern
p = p0, . . . , pm−1 of m characters drawn from an alphabet Σ of size σ and a text
t = t0, . . . , tn−1 of n characters over the same alphabet. We need to find all such
substrings of the text that the distance between the substring and the pattern
is at most k. In the k-difference problem the distance between two strings is the
standard edit distance where mismatches, deletions and insertions are allowed.
The k-mismatch problem is a more restricted one using the Hamming distance
where only mismatches are allowed.

Several algorithms [12] for both variations of approximate string matching
have been presented. Many of the algorithms have been developed with text
data in mind and these algorithms do not necessarily work well with a small
alphabet. Recently developing algorithms for small alphabets has attracted at-
tention as approximate searching of large volumes of gene sequences has become
common. One example of such a biological problem is the gene sequence acqui-
sition problem in which a collection of gene sequences and a primer is given and
we need to extract all those sequences that contain the primer with at most k
mismatches.

The approximate Boyer-Moore (ABM) algorithm [14] is an adaptation of the
Boyer-Moore-Horspool algorithm [8] to approximate matching. ABM performs
well on moderately large alphabets and low error levels. ABM was originally
not designed for small alphabets and in fact it performs rather poorly on them.
Liu et al. [9] tuned the k-mismatch version of ABM for smaller alphabets. Their
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algorithm, called FAAST, has a stronger shift function which makes it faster
than ABM.

In this paper we introduce improvements to the FAAST algorithm gaining
considerable speedups in both preprocessing and search times. The preprocessing
we present is simpler having a lower time complexity than that of FAAST. While
the FAAST algorithm can only handle the k-mismatch problem, we show that
with the simpler preprocessing the algorithm can be modified to also handle the
k-difference problem.

2 Previous Work

So far many algorithms have been developed based on Boyer-Moore string match-
ing [5] for the k-mismatch problem. Here we consider mainly ABM [14] and
FAAST [9], but two other variations developed by Baeza-Yates & Gonnet [3] and
El-Mabrouk & Crochemore [6] are worth mentioning. The shift function of the
Baeza-Yates-Gonnet algorithm is based on the triangular inequality, whereas the
El-Mabrouk-Crochemore algorithm applies the Shift-Add approach [2]. Three
[6,9,14] of these four algorithms have been shown to be sublinear on the av-
erage. E.g. the average case complexity of ABM (without preprocessing) is
O(nk(1/(m − k) + k/σ)).

Typically algorithms of Boyer-Moore type have two phases: preprocessing
of the pattern and searching of its occurrences in the text. ABM uses the bad
character rule for shifting and is thus a direct generalization of the Boyer-Moore-
Horspool algorithm [8]. Instead of stopping at the first mismatch in the matching
loop, the control stops at the k+1st mismatch or when an occurrence of the whole
pattern is found. The shift is calculated considering k + 1 characters currently
aligned with the end of the pattern. The shift is the minimum of the precomputed
shifts for those k+1 characters. After shifting, at least one of the these characters
will be aligned correctly with the pattern.

FAAST is an improved variation of ABM for small alphabets using a varia-
tion of the Four-Russians technique [1,10,15] to speed up the search. Instead of
minimizing k + 1 shifts during search, it uses a precomputed shift table for a
(k + x)-gram aligned with the end of the pattern, where x ≥ 1 is a parameter
of the algorithm. The shift table is calculated so that after the shift at least
x characters are aligned correctly. It is obvious that this stronger requirement
leads to longer shifts in most situations, when x > 1 holds, and the shift is never
shorter than the shift of ABM. Note that for x = 1 the length of shift is the
same for both the algorithms, but the shift is minimized during preprocessing
only in FAAST. So the algorithms are different even for x = 1. The optimal
value of x for maximum searching speed depends on other problem parameters
and the computing platform. However, an increment of x makes the preprocess-
ing time grow. FAAST presents a clear improvement on solving the k-mismatch
problem on DNA data as compared to the ABM algorithm. The preprocessing
phase of FAAST is advanced because it includes the minimization step of ABM.
The preprocessing time of FAAST is O((k + x)((m − k)σk+x + m)).
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3 Algorithm for the k-Mismatch Problem

Our aim is to develop a faster algorithm for DNA data based on FAAST which uses
a (k+x)-gram for shifting. We make two major changes to FAAST. We implement
a simpler and faster preprocessing phase based on dynamic programming. FAAST
counts the number of mismatches in the (k + x)-gram aligned with the end of the
pattern during the searching phase. Our approach makes it possible to compute
this number during preprocessing, which improves the searching speed.

The preprocessing phase computes the Hamming distance between an arbi-
trary (k + x)-gram and each (k + x)-gram of the pattern using dynamic pro-
gramming. The first row and column of the dynamic programming table are
initialized to 0, and the rest of the table can be filled with a simple iteration:

D[i, j] = D[i − 1, j − 1] + α where α =
{

0 if ti−1 = pj−1,
1 otherwise

Note that all (k +x)-grams of the pattern are handled in the same table. As an
example, let us consider a situation where a pattern p = “ggcaa” has been aligned
with the text string “gcata”, and k = x = 2 holds. The reference (k + x)-gram is
now “cata”, and the corresponding Hamming distance table of size (k + x + 1) ×
(m + 1), calculated during preprocessing, is shown in Fig. 1. First of all, we see
that the last cell D[k + x, m] = 3 > k, and therefore it is not possible to find a
match at this position, as already the suffix of the aligned text string contains too
many mismatches. Otherwise, we would have to check for a match by examining
the amount of mismatches in the beginning of the aligned string.

We will also look at the bottom row of the table, and find the rightmost cellD[k+
x, j] with a value h ≤ k, except for the last cell D[k+x, m]. This is the next possible
candidate for aligning the pattern with the text with less than k mismatches and
the correct shift is equal to m − j. In our example, the cell D[k + x, 2] = 2, and we
would shift the pattern by 5 − 2 = 3 positions to get the next alignment.

We do not need the whole table to obtain this information, so we just store
the calculated Hamming distance for each generated (k + x)-gram in a table M
which is indexed by a number obtained by transforming the (k + x)-gram to an
integer. The precalculated shifts are stored in a table Dkx. During the searching

D
g g c a a

i\j 0 1 2 3 4 5

0 0 0 0 0 0 0
c 1 0 1 1 0 1 1
a 2 0 1 2 2 0 1
t 3 0 1 2 3 3 1
a 4 0 1 2 3 3 3

Fig. 1. The Hamming distance table D of size (k + x + 1) × (m + 1) for k-mismatch
problem (k = 2, x = 2). The pattern is “ggcaa” and the reference (k + x)-gram is
“cata”.
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phase we convert the last (k + x)-gram of the aligned text string into an index
y to the tables, and check for an occurrence if M [y] ≤ k. Note that if the text is
not pure DNA data, we need to check the whole aligned text string against the
pattern as there might be some indeterminate characters. Finally, we shift the
pattern according to Dkx[y].

We can improve the preprocessing time by applying the technique used pre-
viously by Fredriksson and Navarro [7] for approximate matching and Navarro
et al. [13] for indexed approximate matching. If the (k +x)-grams are generated
in the lexicographical order, the dynamic programming table differs only by the
last few rows. Therefore we can speed up the preprocessing if we only recalculate
the last rows of the table at each step, starting from the first changed character.

This can be implemented by traversing the trie built of all (k + x)-grams in
depth first order. Nodes at the ith level of the trie correspond to strings of length
i. Thus there are σi nodes on level i and the total number of nodes in the trie is

k+x∑

i=1

σi = σ
σk+x − 1

σ − 1
= O(σk+x).

If we have the dynamic programming table for a node in the trie, the tables for
the children nodes can be obtained by calculating one more row to the dynamic
programming table taking O(m) time per child so calculating the dynamic pro-
gramming tables for all nodes in the trie takes O(σk+xm) time. At the leaf nodes
we have the dynamic programming table for the corresponding (k+x)-gram and
we need to figure out the number of mismatches entered to table M and the shift
value entered to table Dkx which takes O(m) time. The extra calculation needed
at leaf nodes is thus O(σk+xm) because there are σk+x leaf nodes. Therefore the
time complexity of the preprocessing phase is O(2σk+xm) = O(σk+xm). Note
that if we implement the traversing of the trie by recursion, we actually do not
need to explicitly build the trie.

We call this algorithm for the k-mismatch problem Algorithm 1. The shift
behaviors of Algorithm 1 and FAAST are exactly the same. In FAAST the
number of mismatches in the last (k + x)-gram of an alignment is computed
during the searching phase whereas in Algorithm 1 this is fetched from a table.
However, we still need to read the (k + x)-gram and thus the time complexity
of the search phase of Algorithm 1 is the same as in FAAST.

Implementation note. For maximum performance it is crucial how the value of
a (k + x)-gram is computed during searching. We mapped the ASCII values of
DNA characters to integers {0, 1, 2, 3} and used a shift-or loop to construct a bit
representation of a (k + x)-gram.

4 Algorithms for the k-Difference Problem

Algorithm 1 can be easily modified to solve the k-difference problem. We initialize
the dynamic programming table as in the k-mismatch case, but now we apply
the traditional equations for the k-difference problem
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D[i, j] = min

⎧
⎨

⎩

D[i − 1, j − 1] + α,
D[i − 1, j] + 1,
D[i, j − 1] + 1

⎫
⎬

⎭
where α =

{
0 if ti−1 = pj−1,
1 otherwise

As before we construct the (k+x+1)×(m+1) table during preprocessing for
each possible text string, and obtain the tables M [y] and Dkx[y] by checking the
bottom row of the constructed table. The searching phase starts by aligning the
pattern against the text prefix ending at position m−k−1. When examining an
alignment ending at position s all matches ending before that position have been
reported. At each alignment we have to construct a full (m + k + 1) × (m + 1)
edit distance table D with the currently aligned text ts−(m+k)+1 . . . ts against the
pattern, if M [ts−(k+x)+1 . . . ts] ≤ k. A match will be reported, if D[m+k, m] ≤ k.
After this operation we will shift the pattern according to Dkx. In order to
observe correctly an occurrence of the pattern in the beginning of the text, we
assume that t−k, ..., t−1 hold a character not in the pattern. The modification of
Algorithm 1 for the k-difference problem is called Algorithm 2.

Example tables for the k-difference problem are shown in Fig. 2, using a
pattern “ggcaa”, a text string “aggcata” and parameters k = x = 2. We can see
from the first table that Dkx[“cata”] = 5−4 = 1 and M [“cata”] = D0[k+x, m] =
1. Therefore, we would construct a table D, and find that D[m + k, m] = 1 ≤ k,
and report a match at position s. We would continue the search by shifting the
pattern by 1.

In the k-mismatch problem we did not need to reread the last k+x characters
from the text alignment when checking for an occurrence. Instead we had stored
the number of mismatches in the table M and we could extend the match based
on that information. For the k-difference problem the situation is not quite as
simple because we need to compute the dynamic programming table to check
for an occurrence. The problem with Algorithm 2 is that when checking for an
occurrence the aligned text is read forward while during the preprocessing phase
we have generated the dynamic programming table for the last characters of
the pattern. In order to use that information and avoid rereading the last k + x
characters we need to invert the calculation of the dynamic programming table
so that we start building the table from the end of the pattern and the text
string.

First we will explain how the inverted table is built and then show how that
information is used to speed up the checking of an occurrence. The initialization
of the inverted table is different, as we set D[0, j] = j and D[i, 0] = i for i ∈
[0, k + x], j ∈ [0, m], instead of 0. We have to read the pattern and text in reverse,
and therefore we get a new condition for α:

α =
{

0 if tk+x−i = pm−j,
1 otherwise

This inverted table gives equivalent results when it comes to calculating the
actual edit distance between the pattern and the aligned text string, but we still
need to obtain the tables Dkx and M from a normal table. When the inverted
edit distance table has been finished, we have to search for a match at the
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D0

g g c a a
i\j 0 1 2 3 4 5

0 0 0 0 0 0 0
c 1 0 1 1 0 1 1
a 2 0 1 2 1 0 1
t 3 0 1 2 2 1 1
a 4 0 1 2 3 2 1

D
g g c a a

i\j 0 1 2 3 4 5

0 0 0 0 0 0 0
a 1 0 1 1 1 0 0
g 2 0 0 1 2 1 1
g 3 0 0 0 1 2 2
c 4 0 1 1 0 1 2
a 5 0 1 2 1 0 1
t 6 0 1 2 2 1 1
a 7 0 1 2 3 2 1

Dinv

a a c g g
i\j 0 1 2 3 4 5

0 0 1 2 3 4 5
a 1 1 0 1 2 3 4
t 2 2 1 1 2 3 4
a 3 3 2 1 2 3 4
c 4 4 3 2 1 2 3
g 5 5 4 3 2 1 2
g 6 6 5 4 3 2 1
a 7 7 6 5 4 3 2

Fig. 2. Normal and inverted edit distance tables for k-difference problem (k = 2,
x = 2) with the pattern “ggcaa” and the aligned text “aggcata”. Sizes of the tables are
(k + x + 1) × (m + 1) for D0 and (m + k + 1) × (m + 1) for D and Dinv.

last column. To be exact, we need to check 2k + 1 different cells of the table
for a possible match, because the match can contain up to k insert or delete
operations, and the match length can therefore vary. All possible matches that
end in the character ts will be found in the last cells of the last column of
the inverted table. We can either report the first match with less than k + 1
differences, or search for the match with the minimum differences. The current
alignment ts−(m+i)+1 . . . ts matches the pattern p0 . . . pm−1 with less than k + 1
differences, if

Dinv[m + i, m] ≤ k, i ∈ −k . . . k

If we have an edit distance table calculated for the text suffix ts−(k+x)+1 . . . ts,
we can check for a complete occurrence by filling the rest of the table rows from
ts−(k+x) down to ts−(m+k−1). We can therefore store the last row of the inverted
table Dinv[k + x, j], j ∈ [0, m] for each (k + x)-gram during the preprocessing
phase. This row can then be used to fill up the rest of the table by dynamic
programming during the search phase, when the aligned text needs to be checked
for an occurrence, and we do not need to run the dynamic programming for the
whole table every time. We modify Algorithm 2 to use the inverted table during
the search phase, and we also store the last row of the inverted tables generated
during the preprocessing phase. The new algorithm is called Algorithm 3, and
its pseudo code is given in Fig. 3. For simplicity, the preprocessing part of the
pseudo code does not use the optimization of generating the (k + x)-grams in
lexicographic order and recalculating the dynamic programming table only for
those rows that have changed.

The preprocessing phase of Algorithm 2 has the same time complexity as that
of Algorithm 1. In Algorithm 3, we need to calculate both the original dynamic
programming table and the reversed one. Because a (k + x)-gram is read in
opposite directions when calculating these two tables we have to enumerate the
(k+x)-grams twice. However the asymptotic time complexity remains the same.
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preprocess (p, m, k, x)

1. for (i ∈ 0 . . . k + x)
2. D[i, 0] ← 0
3. Dinv[i, 0] ← i
4. for (j ∈ 0 . . . m)
5. D[0, j] ← 0
6. Dinv[0, j] ← j

7. for (t = t0 . . . tk+x−1 ∈ Σk+x)
8. for (i ∈ 1 . . . k + x, j ∈ 1 . . . m)

9. D[i, j] ← min

��
�

D[i − 1, j − 1] + α,
D[i − 1, j] + 1,
D[i, j − 1] + 1

��
� , α =

�
0 if ti−1 = pj−1,
1 otherwise

10. Dinv [i, j] ← min

��
�

Dinv [i − 1, j − 1] + α,
Dinv [i − 1, j] + 1,
Dinv [i, j − 1] + 1

��
� , α =

�
0 if tk+x−i = pm−j ,
1 otherwise

11. M [t] ← D[k + x, m]
12. lastRow[t] ← Dinv[k + x]
13. for (j ∈ [m − 1, 0])
14. if D[k + x, j] < k
15. Dkx[t] ← m − j
16. break

search (t, n, k, x)

1. for (i ∈ 0 . . . m + k)
2. Dinv[i, 0] ← i
3. for (j ∈ 0 . . . m)
4. Dinv[0, j] ← j
5. s ← m − k − 1
6. while (s < n)
7. if (M [ts−(k+x)+1 . . . ts] ≤ k) /* possible occurrence */
8. Dinv [k + x] ← lastRow[ts−(k+x)+1 . . . ts]
9. for (j ∈ 1 . . . m, i ∈ k + x + 1 . . . m + k)

10. Dinv [i, j] ← min

��
�

Dinv [i − 1, j − 1] + α,
Dinv [i − 1, j] + 1,
Dinv [i, j − 1] + 1

��
� , α =

�
0 if ts−i+1 = pm−j ,
1 otherwise

11. if (Dinv [m + i, m] ≤ k, i ∈ −k . . . k)
12. Report match at ts−(m+i)+1 . . . ts with Dinv [m + i, m] differences
13. s ← s + Dkx[ts−(k+x)+1 . . . ts]

Fig. 3. Algorithm 3 preprocessing and search phases

The shifts in the searching phase of Algorithm 2 and 3 are somewhat shorter
than in Algorithm 1 because the probability of two strings matching with
distance less than k is higher when using the standard edit distance than when
using the Hamming distance.
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5 Experimental Results

Tests were run on an Intel Pentium D 2.8 GHz dual core CPU with 1 gigabyte of
memory. This processor contains 24+32 kilobytes of L1 cache, and 1024 kilobytes
of L2 cache. Algorithms were implemented in C and compiled with gcc 4.0.2,
using optimization level -O2 as 32-bit binaries. All the algorithms were run three
times for the same patterns, and the listed search and preprocessing times are
the average values observed between all runs. For comparison in the k-mismatch
case we use the original ABM algorithm and our implementation of FAAST.
The Myers algorithm [11], the algorithm by Baeza-Yates and Perleberg (BYP)
[4] and a version of ABM are used for the k-difference problem. All the results
are shown with the x-value gaining the fastest searching speed in FAAST and
our new algorithms if otherwise is not stated. The best x-value is generally the
same for our algorithms and for FAAST. The other algorithms do not utilize the
x-value.

The searched text is a two megabytes long sequence of the fruit fly genome.
The test patterns have been extracted randomly from the text. Each pattern set
consists of 200 different patterns of the same length, and they are searched sequen-
tially.

Table 1 shows the search times for the original ABM, FAAST and Algorithm 1
in the k-mismatch problem. Algorithm 1 is generally 30–50% faster than FAAST
in the k-mismatch case for k ∈ [1, 3]. Also, the preprocessing phase of Algorithm
1 is 10 to 30 times faster than that of FAAST.

Experimental results for the k-difference problem are shown in Table 2, and
Fig. 4 further illustrates the results with k = 2. In the k-difference problem,
our new algorithms compare well against the Myers, BYP and ABM algorithms.
Algorithms 2 and 3 are up to 50% faster than the BYP algorithm with k = 1,
as it is shown in Table 2. For k = 2 Algorithm 3 is faster than BYP for short
patterns but the BYP algorithm takes the lead for longer patterns. If we allow
more differences, Myers is the fastest for short patterns and BYP for long ones.
The basic version of the Myers algorithm is limited by the 32-bit word size,
and it cannot handle patterns where m > 32. The modifications in Algorithm 3
decrease search time by 20-30%, when compared to Algorithm 2.

Table 1. Search times in seconds for k-mismatch, using best observed x-values. Pre-
processing times are in parentheses.

k = 1 k = 2
m ABM FAAST Alg.1 ABM FAAST Alg.1

15 7.28 (0.04) 1.17 (0.48) 0.64 (0.03) 15.65 (0.04) 2.17 (1.76) 1.21 (0.16)
20 7.28 (0.07) 0.92 (0.65) 0.54 (0.03) 15.59 (0.08) 1.68 (2.58) 0.98 (0.14)
25 7.24 (0.09) 0.78 (0.87) 0.44 (0.04) 15.63 (0.09) 1.47 (3.13) 0.81 (0.22)
30 7.22 (0.15) 0.68 (0.98) 0.40 (0.06) 15.71 (0.10) 1.30 (3.70) 0.69 (0.20)
35 7.34 (0.18) 0.60 (1.22) 0.36 (0.05) 15.65 (0.16) 1.22 (4.16) 0.53 (0.24)
40 7.31 (0.24) 0.53 (1.42) 0.33 (0.05) 15.69 (0.19) 1.11 (4.73) 0.54 (0.27)
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Table 2. Search times in seconds for k-difference, using best observed x-values

k = 1 k = 2
m ABM Myers BYP Alg.2 Alg.3 ABM Myers BYP Alg.2 Alg.3

15 8.82 7.35 2.85 1.98 1.65 38.58 7.33 6.90 6.70 5.04
20 8.27 7.41 2.74 1.63 1.44 27.24 7.36 4.50 5.75 4.53
25 7.99 7.34 2.69 1.41 1.34 19.49 7.37 3.79 5.58 4.09
30 8.07 7.37 2.67 1.32 1.15 14.80 7.37 3.89 5.61 4.03
35 8.07 - 2.62 1.29 1.13 12.48 - 3.73 5.77 4.00
40 7.99 - 2.63 1.23 1.05 11.08 - 3.94 5.95 4.04

 0

 5

 10

 15

 20

 25

 15  20  25  30  35  40

S
ea

rc
h 

tim
e

Pattern length m

ABM
Myers
Alg.2
Alg.3
BYP

Fig. 4. Search times for k-difference with k = 2

We also ran some preliminary tests to compare Algorithm 3 and the algorithm
by Fredriksson and Navarro [7]. We used the version of their algorithm that reads
the window backwards. In these tests Algorithm 3 was faster for pattern lengths
up to 18 when k = 1 and up to pattern length 15 when k = 2. For longer patterns
the algorithm by Fredriksson and Navarro was faster.

The effect of increasing the precalculated edit distance table size, and thus
increasing preprocessing time with a large x-value is shown in Table 3. With small
values of x, the search time decreases as the amount of preprocessing increases,
but after a certain limit increasing the x-value will begin to slow down the search.
For these pattern lengths and k-values the optimal x-value was typically 4 for
the k-mismatch problem and 6 for the k-difference problem.

In the implementation of Algorithm 2, preprocessing is optimized by gen-
erating the (k + x)-grams in lexicographic order and recalculating the dynamic
programming table only for those characters that differ form the previous (k+x)-
gram while Algorithm 3 needs to do this recursion twice, once to generate the
normal dynamic programming table and once to calculate the reversed one.
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Table 3. Preprocessing times and search times for k-difference, with different x-values
(k = 1, m = 20)

Preprocessing Search
x Alg. 2 Alg. 3 Alg.2 Alg.3

1 <0.01 <0.01 977.30 724.61
2 0.01 0.01 213.43 144.53
3 0.02 0.05 45.57 28.92
4 0.10 0.18 11.64 7.08
5 0.37 0.71 3.94 2.44
6 1.59 2.76 1.84 1.44
7 6.38 11.35 1.63 1.51
8 25.27 46.50 3.06 2.94
9 101.09 188.38 4.03 4.06

Thus the preprocessing times in Table 3 are longer for Algorithm 3 than for
Algorithm 2.

6 Concluding Remarks

We have presented improved variations of the approximate Boyer-Moore algo-
rithm for gene sequences for both the k-mismatch problem and the k-difference
problem.

This in ongoing work. Next we will try to apply bit-parallelism for the pre-
processing phase. We are working also on an alphabet reduction. We developed
a variation of Algorithm 1, where the DNA alphabet was mapped to the binary
alphabet. This version was only a bit slower than the original version. However,
for short DNA texts the total time (preprocessing + searching) was the best with
the alphabet reduction. The alphabet reduction also extends the applicability of
our precomputed shift to larger alphabets.

Acknowledgments. We thank Janne Auvinen for implementing a part of the
algorithms.
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Abstract. We present a self-adjusting layout scheme for suffix trees in
secondary storage that provides optimal number of disk accesses for a
sequence of string or substring queries. This has been an open problem
since Sleator and Tarjan presented their splaying technique to create
self-adjusting binary search trees in 1985. In addition to resolving this
open problem, our scheme provides two additional advantages: 1) The
partitions are slowly readjusted, requiring fewer disk accesses than splay-
ing methods, and 2) the initial state of the layout is balanced, making
it useful even when the sequence of queries is not highly skewed. Our
method is also applicable to PATRICIA trees, and potentially to other
data structures.

1 Introduction

Suffix tree is an important data structure in information retrieval, text process-
ing, and computational biology. It is especially suitable for indexing biological
sequences where predefined boundaries such as words, phrases, and sentences are
absent. Some of the best implementations of suffix trees take 10 bytes for each
character to be indexed on average [10]. The large amount of data coupled with
unpredictable access patterns make it necessary to improve the performance of
suffix trees in secondary storage. Currently, there are three main areas of focus
in attempting to improve the performance of suffix trees in secondary storage:

1. Reduce the memory footprint of suffix trees with succinct representations
[1,8] or heuristics [6,10,11].

2. Develop heuristics or algorithms to reduce the number of disk accesses needed
while constructing the suffix tree [2,7,9].

3. Organize the nodes of a suffix tree on disk, so that number of disk access for
a query in the worst case is bounded [4,9].

Like most indexing structures, suffix trees are built with the intention that they
will be queried many times. Therefore, it is very important to devise algorithms
that not only guarantee the worst case performance of a single query, but also
provide good performance for a large sequence of queries collectively. In 1985,
Sleator and Tarjan [12] created the self-adjusting binary tree by using a “splay”
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process, and proved that it produces the optimal number of disk accesses for a
large sequence of queries. Since the publication of their ground breaking paper,
the splaying technique has received wide attention.

However, the splaying process involves promoting a node in the tree to be
the new root of the tree, and therefore is not suitable for suffix trees. Indeed,
Sleator and Tarjan had left the development of a self-adjusting data-structure for
text data as an open question. This open question has been partially resolved
by Ciriani et al. [5], who provided a randomized algorithm that achieves the
optimal number of disk accesses with high probability. Their method utilizes
self-adjusting skip lists on top of a static suffix array. The problem of developing
a deterministic algorithm for static and dynamic texts remained open.

In this paper, we resolve this open problem by designing a self-adjusting suffix
tree layout that optimizes the total number of disk accesses for a sequence of
queries. The main difficulty is that while a number of valid alternative topologies
exist for binary search trees, allowing continual adjustment suited to the flow
of queries, the suffix tree topology is fixed and unbalanced to begin with. We
overcome this limitation by proposing a layout scheme that creates a mapping
of suffix tree nodes to disk blocks. While the tree topology remains fixed, the
mapping of the layout can be adjusted to the sequence of queries, producing
the desired performance bound. We begin with the layout scheme we proposed
in [9], which balances the number of disk accesses required for any root to leaf
path. We make the following contributions:

1. We present the first self-adjusting organization of the suffix tree and show
that it provides an optimal bound for the number of disk accesses for a
large1 sequence of queries. Our layout scheme is deterministic and allows for
insertion and deletion of strings, thus answering the open question posed by
Sleator and Tarjan in [12].

2. We show that a “slow” moving promotion of the nodes works as well as the
dramatic promotion to the root, which is a radical departure from existing
self-adjusting algorithms and data structures, and can potentially be applied
to develop more efficient “splaying” heuristics.

3. In practice, the self-adjusting data structures do not perform as well as bal-
anced trees except in cases where a few of the leaves are accessed significantly
more frequently than others [3,13]. Our layout scheme is balanced in its ini-
tial state, thus combining the advantages of both types of data structures.

4. Besides suffix trees, our scheme can also be used for PATRICIA trees and
potentially other data structures where the topology of the data structure
cannot be altered.

5. Because of the topology of the suffix tree, our layout has the ability to
reduce the number of disk accesses needed for a set of non-identical queries
that share the same prefix.

The rest of the paper is organized as follows: In Section 2 through Section 4 we
present our self-adjusting layout and show its performance in secondary storage.
1 A sequence of queries is considered to be “large” if the number of queries is greater

than the number of leaves in the suffix tree.
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Fig. 1. (a) The suffix tree of the string CATTATTAGGA$. The nodes of an example
partition are drawn as concentric circles. Braching nodes of the partition are labeled
as u, v, w. (b) The skeleton partition tree of the example partition.

Some benefits of our algorithm are discussed in Section 5, and we conclude the
paper in Section 6.

2 Self-adjusting Suffix Tree

Let s be a string of length n, and s[i] denote the ith character of s, for 1 ≤ i ≤ n.
All characters of s are drawn from the alphabet Σ except the last character s[n],
which is a special character $ �∈ Σ. We denote the substring of s starting from
character s[i] and ending at s[j] as s[i..j], where 0 ≤ i < j ≤ n. Suffix si is
defined to be the substring s[i..n], and can be uniquely identified by its starting
position i. The suffix tree of s is a compacted trie of all suffixes of s. In the suffix
tree each leaf represents exactly one suffix of s, and each suffix of s is represented
by exactly one leaf. Figure 1(a) shows an example of the suffix tree.

Unlike a binary tree where each node represents an independent element or
key, whose parent/child relationship can be modified, the parent/child relation-
ship of a pair of nodes in the suffix tree cannot be altered. Thus a direct appli-
cation of the “splaying” method introduced in [12] is not possible. Instead, we
describe a partition scheme for suffix trees and show that optimal performance
can be achieved by slowly altering the partitions.

Definition 1. The score of a node v, denoted as scorev, is one plus the number
of times v is accessed in a sequence of queries, if v is a leaf in the suffix tree.
If v is an internal node, then the score is defined as the sum of the scores of all
the leaves in the subtree under v.

Note that when a leaf v is added to the suffix tree, its score is one by this
definition.
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Definition 2. Let v be a node in a suffix tree. The rank of v is defined as
rankv = �logB(scorev)�.

Definition 3. Two nodes u and v are said to be in the same partition if and
only if there is a path between u and v such that all nodes on the path have the
same rank. The rank of a partition is the rank of the nodes in the partition, and
is denoted as rankP .

Note that a partition is a connected component of the suffix tree, and all par-
titions of a suffix tree are disjoint. Furthermore a partition can be viewed as a
tree. Therefore for any partition P , we define the root and leaves of the partition
as follows:

Definition 4. A node u in partition P is the root of P, if and only if u’s parent
in the suffix tree is not in P, or equivalently, if the rank of u’s parent differs from
u’s rank.

Definition 5. A node u in partition P is a leaf of P if and only if none of u’s
children in the suffix tree is a part of P, or u is a leaf of the suffix tree.

However, while every internal node of a suffix tree has at least two children, this
is not true for a partition of the suffix tree. So all the nodes of a partition can
be divided into two types based on this property.

Definition 6. If u is a node in partition P such that at least two of u’s children
are also in P, then we refer to u as a branching node. Otherwise it is referred
to as a non-branching node.

Definition 7. For a partition P, its skeleton partition tree, TP , contains the
root, all the leaves and branching nodes of P. If a node u is an ancestor of node
v in P and no node on the path between u and v is in TP , then there is an edge
connecting u to v, and u is said to be the parent of v in TP , while v is referred
to as a child of u in TP .

Figure 1(a) shows an example suffix tree with the nodes of one of its partitions
drawn as concentric circles, while Figure 1(b) shows the corresponding skeleton
partition tree.

The number of nodes in a partition P can be as few as one, and as many
as O(Bi+1) where i is the rank of P , but the number of nodes in a skeleton
partition tree is bounded by O(B).

Lemma 1. The number of nodes in a skeleton partition tree for any partition
is at most O(B).

Proof. Suppose V = {v1, v2, . . . , vk} is the set of all leaves of partition P with
rank �. Let r be the root of the partition. Then

B�+1 − 1 ≥ scorer =
k∑

i=1

scorevi ≥ kB� ⇒ B�+1 − 1 ≥ kB� ⇒ B > k
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Therefore the number of leaves in a skeleton partition tree is at most B − 1.
Since all nodes in the skeleton partition tree have at least two children except
the root, there are at most 2B − 2 = O(B) number of nodes. 	


From Lemma 1 we know that the skeleton partition tree can be stored in a
constant number of disk blocks depending on the choice of B.

Definition 8. Let C = v1, v2, . . . , vk be a path in P, such that v1 is a child of
the root of P or a branching node, and vk is a leaf of P, C is referred to as a
component of P.

By Definition 8 it is clear that any partition P can be divided into disjoint
components such that each node is included in exactly one component. Since
each component is a path in the suffix tree it can be stored as a linked list and
packed in disk pages, such that at most O( �

B ) disk pages are accessed if the
�-th node is needed. Let u be a node in TP . There are two copies of u, one in
P and another in TP . We denote the copy of u stored in the skeleton partition
tree as uT and the copy of u stored in one of the components of P as uP . For
consistency purposes, if a node v is not a part of TP we will still refer to the
only copy of v in one of the components as vP . We use u to denote the node u
in the conceptual suffix tree.

Let uT be a node of the skeleton partition tree TP of partition P . The following
information is stored in uT .

1. The string depth u in the suffix tree.
2. For each child v of u in the suffix tree, the leading character of the edge label

between u and v is stored.
3. If a child v of u is in P and also in TP , then a pointer to vT is stored.
4. If a child v of u is in P but is not a part of TP , let v′ be the nearest descendant

of v such that v′ is a part of TP . A pointer to v′T is stored. A pointer to vP
in one of the components is also stored.

5. If a child v of u does not belong to P , then it is the root of another partition
Q. A pointer to vQ is stored.

6. A representative suffix si such that the leaf representing si is a leaf in the
subtree under u in the suffix tree.

To search for a pattern p in the suffix tree, the algorithm starts from the
partition containing the root of the suffix tree, and moves from one partition
to another. At each partition, the skeleton partition tree is first loaded into the
memory. The search starts from the root of TP .

1. Suppose the search is at node vT , and let d be the string depth of vT .
Character p[d + 1] is used to identify the correct child of vT to move to. If
the child is in P , then the search moves to node uT , the child of vT in TP .
Otherwise, the representative suffix is loaded and compared to p.

2. Let W = {w1
T , w2

T , . . . , wh
T } be the series of nodes the algorithm in Step 1

passes through. Let � be the number of characters matched from the com-
parisons of the representative suffix and p. Identify wk

T ∈ W such that the
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string depth of wk
T is less than or equal to �, and the string depth of wk+1

T
is greater than �.

3. Let v be the child of wk
T whose leading character of the edge label is p[d+1]

where d is the string depth of wk
T .

(a) If v is in P then use the pointer stored at wk
T to visit vP in one of

the components of P , and continue down the component until v′P is
encountered such that v′P ’s string depth is less than or equal to �, while
the next node in the component has a string depth greater than �. Let
the string depth of v′P be d. If the first character of the edge label leading
to one of the children of v′ is the same as p[d + 1], then that partition is
processed next. If no such child can be found then pattern p cannot be
found in the suffix tree.

(b) If v is not in P then the partition containing v is loaded and processed.
(c) If no such v is found then pattern p cannot be found in the suffix tree.

Note that in Step 1 of the above algorithm, not all characters of p and the
representative suffix need to be compared because some of the beginning char-
acters of p have already been compared with the representative suffixes from
previous partitions.

Lemma 2. Given a pattern p of length |p|, the search algorithm takes O( |p|B +
logB N) number of disk accesses, where N is the score of the root of the suffix
tree.

Proof. The rank of the root of the suffix tree is �logB N�, therefore on any path
from the root of the suffix tree to a leaf of the suffix tree there are at most
logB N number of partitions. Each character of p is used at most twice, first
in traversing down the skeleton partition tree, and then again in comparing
with the representative suffix, so O( |p|B ) number of disk accesses are needed for
all partitions. For each partition some of the non-branching nodes in one of
its components are needed, but the total number of non-branching nodes that
need to be accessed is at most |p|. Since non-branching nodes from the same
component can be packed into disk pages, at most O( |p|B +logB N) disk accesses
are needed. 	


3 Updating the Partitions

Lemma 3. When leaf v is accessed or added, the rank of a node u may change
only if u is an ancestor of v and it is the root of some partition P.

Proof. Suppose leaf v is accessed. If a node u is not an ancestor of v then its
score and rank does not change. If a node u is an ancestor of v but is not the
root of some partition P , let rP be the root of P and k be the rank of u and
rP . Then before the access we have Bk+1 − 1 ≥ scorerP > scoreu. So after the
access of leaf v, ranku will remain unchanged. 	
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As the score of each node changes, the rank of these nodes may change as well.
When the rank of the root of a partition increases, then this node will be moved
out of the current partition, either joining its parent in the suffix tree if their
ranks are the same, or becoming a singleton partition, i.e., a partition containing
only one node. After the removal of the root of a partition, the partition itself
will split into multiple partitions. It is enough to divide the skeleton partition
tree into multiple trees where each child of the old root will be a new root of the
new partition. The components are not changed except the one containing the
old root.

Lemma 4. When a leaf v is removed from a suffix tree, then the rank of a node
u will not change if u is not an ancestor of v, or it is a branching node in its
partition, or the ancestor of a branching node in its partition.

Proof. Suppose leaf v is removed from the suffix tree. For any node u that is not
an ancestor of v in the suffix tree, u’s score and rank are not changed. If uP is
a branching node and an ancestor of v, then the score and rank of at least one
child of uP also in P is not affected, and since uP must have a rank equal to or
greater than any of its children, uP ’s rank is unaffected. If uP is the ancestor
of a branching node wP and an ancestor of v, wP ’s rank is not affected by v’s
deletion, so uP ’s rank must not change either. 	


When the rank of a node v in a partition, say Q, decreases, it is removed from
the current partition. If the new rank of the node is the same as some of its
children, then it and all its children that have the same rank will be moved to
form a new partition P . If none of the children has the same rank as the removed
node v, then it will become a singleton partition. To merge the partitions the
skeleton partition trees are merged and the node v is added as the new root.
This node is also added to one of the components, while the other components
remain unchanged.

Theorem 1. The amortized number of disk accesses for each query, insertion,
or deletion of a leaf in the suffix tree is O( |p|B + logB N) if the maximum number
of children per node is constant, i.e. the size of alphabet is constant.

Proof. The cost of querying is O( |p|B +logB N) as shown in Lemma 2. During an
insertion, if the root of partition P , uP , is promoted to partition Q, then we put
k credits in u’s account, where k is the size of the alphabet. During a deletion
at most k children will be moved to u’s partition and we will deduct k from its
account. Since any node must be first promoted then demoted, the account is
alway positive. The total number of credits used is at most k logB N , so when k

is constant the amortized cost for insertion and deletion is O( |p|B + logB N). 	


Although the above theorem shows that our layout scheme is limited for suffix
tree indexing of strings drawn from a constant size alphabet, we claim that we
can delay the maintenance of the skeleton partition tree and the partitions and
slowly perform them in the future, so that we can accommodate strings drawn
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from alphabets of any size. The idea is to store all the child pointers of each
internal node in a consecutive sequence of disk blocks. A pointer is then stored
in each internal node pointing to the root of the tree.

4 Self-adjusting Performance

Given a sequence of N queries, we assume without loss of generality that all
queries are successful and end at one of the leaf nodes of the suffix tree. If
this sequence of queries is known beforehand and the suffix tree is partitioned
accordingly, then the number of disk accesses needed to answer any of the queries
will be O

(
|p|
B + rank(r) − rank(v)

)
= O

(
|p|
B + logB

N
score(v)

)
where |p| is the

length of the query, r is the the root node of the suffix tree, and v is the leaf
where the query ends. Let p1, p2, . . . , pN be the sequence of queries, and let
{v1, v2, . . . , vM} be the set of leaves in the suffix tree. Over the entire sequence
of queries, the performance of our layout is

O

⎛

⎝
N∑

i=1

|pi|
B

+
M∑

j=1

score(v) logB

N

score(v)

⎞

⎠ (1)

This is the optimal performance for a given sequence of queries for any data
structure indexing strings [5]. We now show that this worst case performance
can be achieved even if the sequence of queries is not known beforehand.

Theorem 2. Let P = p1, p2, . . . , pN be a sequence of N queries, and S be the
set of numbers {s1, s2, . . . , sM} such that si is the number of times leaf vi is
accessed by patterns in P . Then

O

⎛

⎝
N∑

i=1

|pi|
B

+
M∑

j=1

sj logB

N

sj

⎞

⎠

number of disk accesses are needed to answer all queries in P .

Proof. Since the sequence of queries is not known beforehand, we calculate how
many more disk accesses are needed than the ideal scenario. Consider a suffix
tree in our layout where all leaves have an initial score of one. Let vi be a leaf
node which will be accessed si times in the sequence of N queries. The ideal
number of disk accesses is O( |p|B + logB N − logB si) for each of the si times v is
accessed. For the first B queries made that end at vi the number of disk accesses
is O

(
|p|
B + rank(r) − rank(v)

)
= O

(
|p|
B + logB N

)
which requires O(logB si)

more disk accesses than ideal. For the next B2 − B number of queries, the
number of disk accesses is O(logB si − 1) more than the ideal number of disk
accesses, and so on. The sum of this telescoping series is

B logB k + (B2 − B)(logB si − 1) + . . . = B + B2 . . . + BlogB si = O(si)
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Therefore the total number of disk accesses for all of the si times that vi is
accessed is O

(
si

|p|
B + si logB

N
si

+ si

)
, and for the sequence of queries P , the

number of disk accesses needed is

O

⎛

⎝
N∑

i=1

|pi|
B

+
M∑

j=1

sj

(

logB

N

sj
+ Θ(1)

)
⎞

⎠ = O

⎛

⎝
N∑

i=1

|pi|
B

+
M∑

j=1

sj logB

N

sj

⎞

⎠ 	


So even with the slow promotion of the leaf, the optimal disk access bound can
be achieved.

5 Discussion

Let qi and qj be two queries from the sequence of N queries, that share a common
prefix p. Let vi and vj be the two leaves where qi and qj will end, respectively.
Then the score of the lowest common ancestor of vi and vj , say v, is at least the
sum of the scores of vi and vj . Therefore even if qi and qj are infrequent queries
compared to others queries in the sequence, v could still have a high rank, thus
potentially reducing the number of disk accesses needed to find vi and vj . This
is also true for a sequence of such queries.

For a balanced tree there will always be Θ
(

|p|
B + logB M

)
number of disk

accesses, where M is the number of leaves in the tree. For any self-adjusting data
structure for strings in secondary storage, suppose that every leaf is accessed
equal number of times, then the worst case performance of the self-adjusting
data structure is the same as the balanced tree, because N

k = M . But if the
self-adjusting data structure is not balanced to start with, then it will take some
time for it to became as efficient as the balanced tree. Therefore self-adjusting
data structure will not be as effective as the balanced tree.

From Equation 1 we can also observe that if a leaf is accessed B times more
frequently than other leaves in the tree in the sequence of N queries, it will
only save a total of B disk accesses compared to the balanced tree. So if we
assume that the self-adjusting data structure is not balanced in the beginning,
then it would require a very skewed data set to offset the initial inefficiency of
the self-adjusting data structure.

This observation provides an explanation for the results in [3,13], where the
authors were surprised that self-adjusting data structures do not perform nearly
as well as balance trees, except for very skewed data sets. However, if the suf-
fix layout is built with our layout scheme, then it will be a balanced layout,
potentially avoiding the initial inefficiencies. But it should be noted that all self-
adjusting data structures will incur an overhead for the adjustment which will
also affect their performance.

6 Conclusion

In this paper we presented a self-adjusting layout scheme for suffix trees in
secondary storage, which allows insertion and deletion of strings. We showed
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that our layout scheme is optimal for a sequence of queries. This settles the
question first proposed by Sleator and Tarjan [12] of constructing an optimal
self-adjusting data structure for strings, which is partially solved by Ciriani et
al. [5] for the static case with high probability to achieve the optimal bound.
Our layout scheme can also be applied to PATRICIA trees and possibly to many
other data structures whose topology is uniquely determined by the data being
indexed and cannot be altered. However, we also call the benefit of non-balanced
self-adjusting data structures for strings into question. We argued that due to the
overhead needed to readjust itself, self-adjusting data structures are not likely to
perform as well as balanced trees except for very skewed data sets. But since the
initial state of our layout scheme is a balanced layout, and it only readjusts itself
very infrequently it may perform well in practice. Thus, our scheme combines
the benefits of both types of data structures. Another added benefit of our layout
is that, if multiple non-identical queries shares the same prefix, then the node
representing this prefix will have a higher rank even if the queries are infrequent
by themselves. This reduces the number of disk accesses needed for all of them.
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Abstract. We consider a subset matching variant of the Dictionary
Query problem. Consider a dictionary D of n strings, where each string
location contains a set of characters drawn from some alphabet Σ. Our
goal is to preprocess D so when given a query pattern p, where each
location in p contains a single character from Σ, we answer if p matches
to D. p is said to match to D if there is some s ∈ D where |p| = |s| and
p[i] ∈ s[i] for every 1 ≤ i ≤ |p|.

To achieve a query time of O(|p|), we construct a compressed trie
of all possible patterns that appear in D. Assuming that for every
s ∈ D there are at most k locations where |s[i]| > 1, we present two
constructions of the trie that yield a preprocessing time of O(nm +
|Σ|kn lg(min{n, m})), where n is the number of strings in D and m
is the maximum length of a string in D. The first construction is based
on divide and conquer and the second construction uses ideas intro-
duced in [2] for text fingerprinting. Furthermore, we show how to ob-
tain O(nm + |Σ|kn + |Σ|k/2n lg(min{n, m})) preprocessing time and
O(|p| lg lg |Σ| + min{|p|, lg(|Σ|kn)} lg lg(|Σ|kn)) query time by cutting
the dictionary strings and constructing two compressed tries.

Our problem is motivated by haplotype inference from a library of
genotypes [14,17]. There, D is a known library of genotypes (|Σ| = 2),
and p is a haplotype. Indexing all possible haplotypes that can be inferred
from D as well as gathering statistical information about them can be
used to accelerate various haplotype inference algorithms. In particular,
algorithms based on the “pure parsimony criteria” [13,16], greedy heuris-
tics such as “Clarks rule” [6,18], EM based algorithms [1,11,12,20,26,30],
and algorithms for inferring haplotypes from a set of Trios [4,27].

1 Introduction

In the Dictionary Query problem, one is given a set D of strings s1, . . . , sn and
subsequent queries ask whether a given query pattern p appears in D. In [7],

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 195–204, 2007.
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this paradigm was broaden to allow a bounded number of mismatches, or allow
a bounded number of “don’t care” characters. We further extend dictionary
queries to support a restricted version of subset matching. In subset matching,
the characters are subsets of some alphabet Σ. A pattern p is said to match a
string s of the same length if p[i] ⊆ s[i] for every 1 ≤ i ≤ |p|. The subset matching
problem of finding all occurrences of a pattern string p in a text string t was
solved in O(n lg2 n) deterministic time [8] and (n lg n) randomized time [22],
where n is the sum of sizes of the sets in p and t.

In this paper we consider the problem of indexing a dictionary for subset
matching queries. We focus on a relaxed version of subset matching requiring
that the query pattern is over single characters from Σ rather than subsets of Σ.
Formally, the problem we consider is defined as follows. We are given a dictionary
D of strings s1, . . . , sn where each string character is a subset of some alphabet
Σ. A query p is a string over the alphabet Σ, and we say that p matches to si if
|p| = |si| and p[j] ∈ si[j] for every 1 ≤ j ≤ |p|. Our goal is to preprocess D for
queries of the form “does p match to a string in D?”.

Let m denote the length of the longest string in D and let D′ be the set of
all strings that match to a string in D. For example, if D contains two strings,
ab{c, d} and ab{c, d}g{a, b, c}ad, then D′ = {abc, abd, abcgaad, abcgbad, abcgcad,
abdgaad, abdgbad, abdgcad}. Notice that a compressed trie of D′ supports a
query time of O(|p|) for a pattern p. Such a trie can be naively constructed
in O(|Σ|knm) time and O(|Σ||D′|) space, assuming every s ∈ D has at most
k locations in which |s[i]| > 1. The techniques of Cole et al. [7] can be used to
solve the problem with O(nm lg(nm)+n(c1 lg n)k+1/k!) preprocessing time, and
O(m+(c2 lg n)k lg lg n) query time (c1 and c2 are some constants). For small |Σ|,
this approach is less efficient than the trie approach.

In Sections 2 and 3 we present two faster constructions of the trie. The first
construction is based on divide and conquer and requires O(nm + |Σ|kn lg n)
preprocessing time. The second construction uses ideas introduced in [2] for
text fingerprinting and requires O(nm + |Σ|kn lg m) preprocessing time. The
space complexity is O(|Σ||D′|), and it can be reduced to O(|D′|) by using
suffix tray [9] ideas. This comes at the cost of O(|p| + lg lg |Σ|) query time.
In Sections 4 we show that by cutting the dictionary strings and constructing
two tries we can obtain O(nm + |Σ|kn + |Σ|k/2n lg(min{n, m})) preprocessing
time at the cost of O(|p| lg lg |Σ| + min{|p|, lg |D′|} lg lg |D′|) = O(|p| lg lg |Σ| +
min{|p|, lg(|Σ|kn)} lg lg(|Σ|kn)) query time.

An important feature of our first two trie constructions is that they can cal-
culate the number of appearances in D of each pattern in D′ (i.e., which is most
common? which is least common? etc.). This feature is useful in the application
of Haplotype Inference that we next describe according to the presentation of
Gusfield [13].

1.1 A Haplotype Trie from a Genotype Dictionary

In diploid organisms such as humans, there are two non-identical copies of each
chromosome (except for the sex chromosome). A description of the data from
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a single copy is called a haplotype while a description of the conflated (mixed)
data on the two copies is called a genotype. The underlying data that forms
a haplotype is either the full DNA sequence in the region, or more commonly
the values of only DNA positions that are Single Nucleotide Polymorphisms
(SNP’s). A SNP is a position in the genome at which exactly two (of four)
nucleotides occur in a large percentage of the population. If we consider only the
SNP positions, each position can have one of two nucleotides and a haplotype
can thus be represented as a 0/1 vector. A genotype can be represented as a
0/1/2 vector, where 0 means that both copies contain the first nucleotide, 1
means that both copies contain the second nucleotide and 2 means that the
two copies contain different nucleotides (but we don’t know which copy contains
which nucleotide).

The next high-priority phase of human genomics will involve the development
and use of a full Haplotype Map of the human genome [21]. Unfortunately, it is
prohibitively expensive to directly determine the haplotypes of an individual. As
a result, almost all population data consists of genotypes and the haplotypes are
currently inferred from raw genotype data. The input to the haplotype inference
problem consists of n genotypes (0/1/2 vectors), each of length m. A solution to
the problem associates every genotype with a pair of haplotypes (binary vectors)
as follows. For any genotype g, the associated binary vectors v1, v2 must both
have value 0 (respectively 1) at any position where g has value 0 (respectively
1); but for any position where g has value 2, exactly one of v1, v2 must have
value 0, while the other has value 1.

In our settings, the dictionary D corresponds to the library of genotypes,
where every genotype location that has the value 2 is replaced by the set {0, 1}.
This way, |Σ| = 2 and D′ consists of all the possible haplotypes that can be
part of a pair inferred from D. Our trie stores all haplotypes in D′ and we
can calculate the number of appearances in D of each such haplotype while
constructing the trie. The trie can then be used to accelerate haplotype inference
algorithms based on the “pure parsimony criteria” [13,16], greedy heuristics such
as “Clarks rule” [6,18], EM based algorithms [1,11,12,20,26,30], and algorithms
for inferring haplotypes from a set of Trios [4,27].

2 An O(nm + |Σ|kn lg n) Time Construction

In this section we present an O(nm + |Σ|kn lg n) time construction for the com-
pressed trie of D′. To simplify the presentation, for the rest of the paper we
assume w.l.o.g. that all strings in D have the same length m.

We first describe an algorithm for merging two compressed tries T1 and T2.

1. If one of the tries T1 or T2 has a single vertex, then return a copy of the
other trie.

2. If both the roots of T1 and T2 have degree 1, and the labels of the edges
leaving the roots of T1 and T2 have a common first letter, then find the
longest common prefix (LCP) p of these labels. Remove the string p from
T1, that is, if the label of the edge e that leaves the root of T1 is equal to p,
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remove the edge e and the root from T1, and otherwise remove p from the
label of e. Additionally, remove p from T2.

Next, recursively merge the two modified tries T1 and T2, and let T be
the result of the merge. Add a new root r to T and connect it by an edge to
the old root of T , where the label of the edge is p.

3. If the two cases above do not occur, then split the trie T1 as follows. For
every edge e = (r, v) that leaves the root r of T1, create a new trie that
contains r and all the descendents of v in T1. This trie will be denoted T a

1 ,
where a is the first letter in the label of e. Similarly, split the trie T2 and
create tries {T a

2 }a∈Σ.
For each letter a ∈ Σ, recursively merge the tries T a

1 and T a
2 if these two

tries exist. Finally, merge the roots of the merged tries.

If the LCP of two edge labels can be obtained in O(1) time, then the time
complexity of this algorithm is O(|T1| + |T2|), where |T | denotes the number of
vertices in the compressed trie T . Next, we present the algorithm for building a
compressed trie of D′.

1. For every string in D, replace every character that is a set of size greater
than one with a new symbol φ.

2. Build a generalized suffix tree T̂ containing all suffixes of strings in D.
3. Build compressed tries T1, . . . , Tn, where Ti is a compressed trie containing

all the patterns that match si (recall that D = {s1, . . . , sn}).
4. Repeat �lg n� times:

(a) Partition the compressed tries into pairs, except at most one trie.
(b) Merge each pair of tries into a single trie.

Constructing T̂ requires O(nm) time. Each edge label b in some trie that is built
during the algorithm, matches a substring si[j..j + |b|−1] of some string si in D.
It is important to notice that |si[l]| = 1 for every j+1 ≤ l ≤ j+ |b|−1. Using the
suffix tree T̂ , computing the longest prefix of two edge labels takes O(1) time.
Therefore, the merging of two compressed tries in the algorithm is performed in
linear time. In each iteration of line 4, the total work is linear in the total sizes
of the current tries, which is O(|Σ|kn). Thus, the overall time complexity of the
algorithm is O(nm + |Σ|kn lg n).

3 An O(nm + |Σ|kn lg m) Time Construction

In this section we present an O(nm + |Σ|kn lg m) time construction for the
compressed trie of D′. Consider the lexicographical ordering of all the strings
in D′. Notice that if we knew this ordering and the length of the LCP of every
adjacent strings in this ordering, then we could construct the trie in O(|D′|) =
O(|Σ|kn) time by adding the strings in order. We next describe how to obtain
the required ordering and LCP information in O(nm + |Σ|kn lg m) time.

We assign a unique name to every string in D′ using fingerprinting tech-
niques [2,10,25]. A naming table of some p ∈ D′ is a labeled complete binary
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tree whose leaves are the characters of p (without loss of generality |p| is a power
of two1). The naming table has therefore 1 + lg |p| rows and the cells in the last
row are named by the characters of p. For example, if ab{a, c}b{b, c}cab ∈ D
then p = abcbbcab ∈ D′ and the naming table of p might look like this:

25
9 17

1 2 3 1
a b c b b c a b

We assign integer names to the rest of the table using the naming tech-
nique [3,24], which is a modified version of the Karp, Miller and Rosenberg
algorithm [23]. The names are assigned bottom-up, such that when we assign a
name to a cell we look at the pair of cells below it. If this pair appeared before
then we give the same name that was given before, otherwise we give a new
name. Finally, the unique name assigned to p is in the root of the naming table.

The following property is what makes the naming technique appealing in our
settings. Consider two strings (over the alphabet Σ) p and q that both match
the same string in D. If p and q differ in one location then the naming table of
p differs from the naming table of q only in 1+ lg |p| cells (these cells are in bold
in the following example where p = ababbcab and q = abcbbcab).

37
13 17

1 1 3 1
a b a b b c a b

Consider all the strings that match a specific string s ∈ D. It is possible to
enumerate these strings in an order s(1), s(2), . . . in which two consecutive strings
differ in exactly one location. This means that we can compute names for these
strings in O(m + |Σ|k lg m) time as follows. We first build the naming table of
s(1) from bottom to top, using a two-dimensional table B to store the names
given so far. More precisely, B[a, b] is the name given for the pair (a, b), if the
pair (a, b) was named. Since checking whether a pair of names appeared before
takes constant time, the time it takes to build the naming table is linear in the
number of cells in the table, which is m + m/2 + m/4 + · · · + 1 = 2m − 1. Next,
we build the naming table of s(2) by updating 1+ logm cells in the table of s(1),
which takes O(log m) time. Then, we build the naming table of s(3) using the
naming table of s(2), and so on.

Applying the naming procedure to all strings in D takes O(nm + |Σ|kn lg m)
time. The space complexity is O((nm + |Σ|kn lg m)2) due to the table B. The
space complexity can be reduced to O(nm + |Σ|kn lg m) as shown in [10]. The
algorithm of [10] uses a different order of filling the naming tables. In the first
step, the algorithm computes the names in the second row from the bottom of
1 Otherwise, we can extend p until |p| is a power of two by concatenating to p a string

of a repeated new character.
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the naming tables of all strings in D′. This is done by taking all pairs of names
encountered in the first row of each naming table, lexicographically sorting these
pairs, and then naming the pairs. In the second step, the algorithm computes
the names in the third row from the bottom of the naming tables of all strings
in D′, and so on.

In addition to the reduction in space, the algorithm of [10] has the following
property. For every two strings s, s′ ∈ D′ with names a and a′ respectively,
a < a′ if and only if s is lexicographically smaller than s′.

After naming all strings in D′, we sort these strings according to their names.
As noted above, this gives the lexicographical ordering of D′. Furthermore, the
LCP of any two strings in D′ can be computed in O(lg m) time by comparing
their naming tables top-down as noticed in [25]. Therefore, we can compute the
length of the LCP of every two consecutive strings in the lexicographic ordering
of D′ in O(|Σ|kn lg m) time, and then construct the trie in O(|D′|) = O(|Σ|kn)
time by adding the strings in lexicographical order.

4 An O(nm + |Σ|kn + |Σ|k/2n lg(min{n, m})) Time
Construction

In this section we present a different approach for solving the dictionary query
problem. Instead of building one trie, we build two tries. This reduces the con-
struction time, but gives a penalty in the query time.

Let S be a set of elements with keys from some set U . For every x ∈ U , the
successor of x in S is the element y ∈ S such that key(y) ≥ x and key(y) is
minimal. A successor data-structure for the set S supports answering queries of
the form “Given a value x ∈ U , what is the successor of x in S?”. For U =
{1, . . . , U}, a successor data-structure for a set S can be built in O(|S|) time
and space such that successor queries are answered in O(lg lg U) time (such a
construction is obtained, for example, by combining the van Emde Boas data-
structure [29] with the static dictionary of Hagerup et al. [15]).

In order to build a dictionary query data-structure, we split every string in
D into two parts. For each si ∈ D define s′i to be the longest prefix of si that
contains at most �k/2� sets of size greater than 1. Also, define s′′i to be the prefix
of sR

i (i.e. the string si reversed) of length |si| − |s′i| = m − |s′i|. For example, if
k = 2 and s1 = ab{c, d}g{a, b, c}ad then s′1 = ab{c, d}g and s′′1 = da{a, b, c}.

Let D1 = {s′1, . . . , s′n} and D2 = {s′′1 , . . . , s′′n}. For i = 1, 2, let D′
i be the

set of all strings that match to one of the strings in Di. We wish to reduce the
problem of matching a string p against the dictionary D to matching a prefix p′

of p against D1, and matching a prefix p′′ of pR against D2, with |p′′| = |p|− |p′|.
However, there are two issues that need to be addressed: (1) It is possible that
p′ matches a string s′i, while p′′ matches to a string s′′j with i �= j. This of course
does not imply that p matches to a string in D. (2) We do not know the length
of p′, so we need to check all prefixes of p that match to a string in D1.

Let T1 be a compressed trie for D′
1 and T2 be a compressed trie for D′

2. For
each vertex of T2 assign a distinct integer from the set {1, . . . , |T2|}. The integer
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assigned to a vertex v is denoted id(v). The string that corresponds to a vertex
v in a trie is the concatenation of the edge labels in the path from the root to
v. The depth of a vertex v in a trie is the length of the strings that corresponds
to v. We say that the vertices v ∈ T1 and w ∈ T2 are paired if the sum of their
depths is m. For a vertex v in T1 (respectively T2) whose corresponding string
is s, let Lv be the set of all indices i such that s matches to s′i (respectively s′′i ).
For a vertex v ∈ T1, let Sv be the set containing every vertex w ∈ T2 that is
paired with v and for which Lv ∩ Lw �= ∅.

The data-structure for the dictionary query problem consists of the tries T1

and T2, and each vertex v ∈ T1 has a successor data-structure that stores the
set Sv. The key of an element w ∈ Sv is id(w).

Answering a query is done as follows. First find the longest path P1 in T1

that corresponds to a prefix of the query pattern p, and the longest path P2 in
T2 that corresponds to prefix of pR. For a vertex v ∈ P1, if a vertex w ∈ P2 is
paired with v then by definition the depth of w is equal to m minus the depth of
v. Since there is at most one vertex on P2 with a given depth, we conclude that
there is at most one vertex w ∈ P2 that is paired with v. Moreover, it is possible
to find all paired vertices v ∈ P1, w ∈ P2 in O(|P1| + |P2|) = O(m) time by
traversing P1 from top to bottom, while concurrently traversing P2 from bottom
to top. To answer the query p, we just need to check whether w ∈ Sv for some
paired vertices v ∈ P1 and w ∈ P2. Checking whether w ∈ Sv for some fixed v
and w is done by performing a successor query on the successor data-structure
of v. Answering a dictionary query requires at most |P1| ≤ m searches in the
successor structures, where each such search takes O(lg lg |D′|) time. Therefore,
the time to answer a query is O(m lg lg |D′|).

We now discuss the time complexity of building the tries. The tries T1 and T2 are
built using the algorithms in Sections 2 and 3 in O(nm + |Σ|k/2n lg(min(n, m)))
time. In order to build the sets Sv for all v, we compute the intersections Lv ∩ Lw

for all v and w. This is done as follows. For each i from 1 to n, go over all ver-
tices v ∈ T1 such that i ∈ Lv. For each such v, go over all w ∈ T2 such that
i ∈ Lw, and add the pair (id(w), i) to a list Iv that is stored at v. Then, for each
v ∈ T1, lexicographically sort the list Iv and obtain all the intersections involv-
ing v. Therefore, computing all the intersections and building the successor data-
structures takes O(|Σ|kn) time. The total preprocessing time is O(nm + |Σ|kn +
|Σ|k/2n lg(min{n, m})).

In order to speed up the query time, we use the technique of fractional cas-
cading [5]. Using a variant of this technique that is described in the next section,
we can preprocess T1 such that searching for a key x in all the successor data-
structures of the vertices of some path P in T1 is done in O(|P | lg lg |Σ|+lg lg |D′|)
time. Recall that in order to answer a query, we need to locate id(w) in the succes-
sor data-structures of v for every paired vertices v ∈ P1 and w ∈ P2. In order to
use the fractional cascading speedup, we need to decrease the number of integers
assigned to the vertices of P2. Note that we can assign the same integer to several
vertices of T2 if their corresponding strings have different lengths. Thus, we parti-
tion the vertices of T2 into paths Q1, . . . , Qr using heavy path decomposition [19].
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This decomposition has the property that a path from some vertex of T2 to the
root passes through at most lg |T2| different paths in the decomposition. We now
define id(w) to be index i of the path Qi that contains w.

Now, locating id(w) in the successor data-structures of v for every paired
vertices v ∈ P1, w ∈ P2 is done by grouping all vertices w ∈ P2 with id(w) = i,
and performing a search for i in all the successor data-structures of the vertices
of some sub-path of P1 (the subpath that contains all the vertices in P1 between
the highest and lowest vertices of P1 that are paired to vertices w ∈ P2 with
id(w) = i). We have that there are at most min{m, lg |T2|} = O(min{m, lg |D′|})
different integers assigned to the vertices of P2, and the different subpaths of P1

that correspond to the different integers in P2 are disjoint. Therefore, the time
to answer a query is O(m lg lg |Σ| + min{m, lg |D′|} lg lg |D′|).

4.1 Fractional Cascading

Let T be a rooted tree of maximum degree d. Each vertex v of T has a set
Cv ⊆ {1, . . . , U}. The goal is to preprocess T in order to answer the following
queries “given a connected subtree T ′ of T and an integer x, find the successor of
x in Cv for every v ∈ T ′”. The fractional cascading technique of [5] gives search
time of O(|T ′| lg d + lg lg U), with linear time preprocessing. We now present a
variant of fractional cascading that gives better search time (our construction is
similar to the one in [28]).

The preprocessing of T is as follows. For each vertex v of T construct a list
Av whose elements are kept in a non-decreasing order (the order of constructing
the Av lists is from the leaves up). For a leaf v, Av contains exactly the elements
of Cv. For an internal vertex v, Av contains all the elements of Cv. Additionally,
for every child w of v, Av contains every second element of Aw Each element
of Av stores a pointer to its successor in the set Cv. An element of Av which
came from a set Aw keeps a pointer to its copy in Aw. This pointer is called a
w-bridge.

Handling a query T ′, x is done by finding the successor of x in each set Av

for v ∈ T ′. Then, using the successor pointers, the successor of x in each set Cv

is obtained. Suppose we have found the successor y of x in Av and we now wish
to find the successor y′ of x in Aw, where w is a child of v. If we know the first
element that appears after y in Av and has a w-bridge, then we can follow the
bridge to Aw and y′ is either the element at the end of the bridge or the element
preceding it in Aw.

In order to efficiently find the first w-bridge after some element of Av, per-
form additional preprocessing: Partition the elements of each list Av into blocks
B1

v , B2
v , . . . , B

�|Av |/d�
v of d consecutive elements each (except perhaps the last

block). Let w1, . . . , wd′ be the children of v. For each block Bi
v build an array

Li
v, where Li

v[j] is the location of the first wj-bridge that appear in the blocks
Bi+1

v , Bi+2
v , . . . , B

�|Av |/d�
v . Moreover, for all j, build a successor data-structures

Si,j
v that contains all the elements of the block Bi

v that have a wj -bridge. The
key of an element in Si,j

v is its rank in the block Bi
v.
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Given an element y of Av, finding the first element of Av starting from y that
has a wj -bridge is done in O(lg lg d) time. Therefore, the overall search time is
O(|T ′| lg lg d + lg lg U).

5 Conclusion and Open Problems

We have shown two solutions for the subset dictionary query problem: one based
on building a trie for D′ and one based on building two tries. We conjecture that
the trie of D′ can be built in O(nm + |Σ|kn) time.
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Abstract. Weighting models use lexical statistics, such as term frequen-
cies, to derive term weights, which are used to estimate the relevance of
a document to a query. Apart from the removal of stopwords, there is
no other consideration of the quality of words that are being ‘weighted’.
It is often assumed that term frequency is a good indicator for a de-
cision to be made as to how relevant a document is to a query. Our
intuition is that raw term frequency could be enhanced to better dis-
criminate between terms. To do so, we propose using non-lexical features
to predict the ‘quality’ of words, before they are weighted for retrieval.
Specifically, we show how parts of speech (e.g. nouns, verbs) can help
estimate how informative a word generally is, regardless of its relevance
to a query/document. Experimental results with two standard TREC1

collections show that integrating the proposed term quality to two estab-
lished weighting models enhances retrieval performance, over a baseline
that uses the original weighting models, at all times.

1 Introduction

The aim of an Information Retrieval (IR) system is to retrieve relevant docu-
ments in response to a user need, which is usually expressed as a query. The
retrieved documents are returned to the user in decreasing order of relevance,
which is typically determined by weighting models. Most weighting models use
term statistics, such as term frequency, to assign weights to individual terms,
which represent the contribution of the term to the document content. These
term weights are then used to estimate the similarity between queries and doc-
uments [18].

The underlying idea of most weighting models is to boost the weight of terms
that occur frequently in a document and rarely in the rest of the collection of
documents [18]. Various extensions have been applied on top of this, such as nor-
malising term frequency according to document length [1,5,14], or using the term
frequency in specific fields of structured documents (e.g. title, abstract) [8,13,15].
Further extensions include integrating query-independent evidence (e.g. PageR-
ank [2]) to the weighting model in the form of prior probabilities [4,6,12] (‘prior’
because they are known before the query is issued). For example, assuming that
a document’s PageRank indicates its quality, integrating PageRank priors to the

1 Text REtrieval Conference: http://trec.nist.org/

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 205–216, 2007.
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weighting model consists in using information about the document quality when
computing how relevant that document is to a query.

We propose a measure of term quality, which is similar to the notion of doc-
ument quality, in that it is known prior to a query. In addition, our proposed
term quality is known prior to the document as well, because it represents how
informative a term is generally in language, not with respect to a query or its
contribution to the content of a specific document. Hence, this is an intrinsic
notion of term quality. The intuition behind using it in IR is that integrating
it into the term weighting process may enhance retrieval performance, similarly
to the way document quality (in the form of priors, for example) can improve
performance when integrated to document ranking [4,6,12].

We derive the proposed term quality in an empirical way from part of speech
(POS) n-grams. POS n-grams are n-grams of parts of speech, extracted from
POS tagged text. Specifically, we extend the work of [7] who estimate how in-
formative a word sequence corresponding to a POS n-gram can be. We use this
to derive a quality score for each term separately, not as a sequence, which we
then integrate to the weighting model. Our intuition is that the term frequency
statistics used by weighting models could be enhanced to better discriminate
between terms, using our proposed measure of term informativeness. Hence, our
goal is to assist the lexical features used by these models (e.g. term frequency),
which are query/document-dependent, with a non-lexical feature (our proposed
term quality), which is query/document-independent.

We evaluate the impact of integrating our proposed term quality into weight-
ing models upon retrieval performance, using the original weighting model as
a baseline. Experiments on two established weighting models and two standard
TREC collections, show that term quality improves retrieval performance some-
times considerably, and consistently at all times.

The remainder of this paper is organised as follows. Section 2 presents re-
lated studies. Section 3 details our methodology for deriving term quality and
for extending weighting models with it. Section 4 discusses the evaluation, and
Section 5 summarises our conclusions.

2 Related Studies

We propose to extend weighting models with a measure of term quality. The no-
tion of an intrinsic term quality is new in IR (to our knowledge), but not in lin-
guistics. Word commonness, which measures how common a word is generally in
language, is used in theoretical and practical linguistics, e.g. in quantitative lin-
guistics, lexicography, and language teaching [16]. Mikk [9] suggests a ‘corrected
term frequency’ based on word commonness, which predicts the complexity of a
document’s content. Our proposed term quality is based on the same intuition,
namely that raw term frequency could be enhanced to better discriminate between
terms. Unlike previous studies, we specifically apply this intuition to IR, and ask
whether we can extend models that are tailored to process term frequencies, with
the proposed term quality, so as to improve retrieval performance.
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There are two novel contributions in this work. First, even though previous
work has extended weighting models with various types of evidence, as briefly
mentioned in Section 1 [4,6,8,15], to our knowledge, no study has reported in-
tegrating term evidence that is both query- and document-independent to the
weighting model. The closest to this notion is removing stopwords before re-
trieval, in the sense that words from a standard list are removed regardless of
the query/document. The second novelty of our approach is that we use POS
n-grams to derive a measure of term quality. POS n-grams were first used in
POS tagging, to determine the probability of occurrence of POS tags [3]. More
recently, POS n-grams were used to estimate the quality of word sequences in
IR [7]. This work is a continuation of the latter, because it uses the quality of
POS n-grams to derive a measure of quality for individual terms.

3 Methodology

3.1 Deriving Term Quality from Parts of Speech

We derive a term quality measure from POS n-grams as follows. We use a POS
tagger to POS tag a collection of documents. Any POS tagger and any large
collection of documents can be used. We extract POS n-grams from each POS-
tagged sentence in each document. For example, for a sentence ABCDEF, where
parts of speech are denoted by the single letters A, B, C, D, E, F and where POS
n-gram length = 4, the POS n-grams extracted are ABCD, BCDE, and CDEF.
Then, we compute the quality of each POS n-gram, using the content load (cl)
estimator described in [7]. This estimator considers nouns, verbs, adjectives and
participles more informative than other parts of speech, with nouns the most
informative, following evidence given in [11,19]. The formula is:

cl =
CN + CAV P · �

n
(1)

where CN = number of nouns in the POS n-gram, CAV P = number of adjectives
and/or verbs and/or participles in the POS n-gram, n = POS n-gram length,
and � = penalising variable applied to adjectives and/or verbs and/or partici-
ples. The value of ρ is automatically derived from collection statistics [7]. Using
Equation (1), the content load of a POS n-gram is between 0 and 1, where 0
and 1 are the minimum and maximum values, respectively. This content load
for POS n-grams approximates how important any of the word sequences that
correspond to a POS n-gram can be. We extend the IR system’s inverted file
with information about the POS n-grams that are associated with each term,
and their content load. The inverted file of an IR system contains statistics on
term frequencies in each document and in the whole collection.

Based on Equation (1), we propose to compute the quality score for each term
(tqs) as follows:

tqs =
∑

clt
fPOSngramt

(2)
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Table 1. Example term quality for TREC query 451 (stemmed & no stopwords)
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where clt is the content load of a POS n-gram that contains2 term t (computed
using Equation (1)), and fPOSngramt is the number of POS n-grams that contain
term t. Note that we consider the content load of all POS n-grams, regardless of
which documents they occur in, because our goal is to derive a global, as opposed
to document-centric, estimation of term quality. Using Equation (2), the term
quality score is between 0 and 1, where 0 and 1 are the minimum and maximum
scores, respectively. The term quality score approximates how important a term
generally is, based on its part of speech and the POS n-grams in which it occurs
in the collection.

Table 1 gives an example of the quality score given to terms from TREC
query number 451 (queries are presented in Section 4.). Terms are stemmed
and stopwords are removed in this example. We see that bengal, breeder and
catteri have the highest tqs, while desc, includ and onli have the lowest.
Even though tqs is derived from POS n-grams, and specifically a formula that
rewards nouns, slightly penalises adjectives, verbs and participles, and ignores
everything else, the term quality score seems to discriminate between terms on
the basis of more than just their POS class. Hence, the highest scoring term is
an adjective (bengal), not a noun, in this query. Similarly, while both name and
tiger are nouns, they have different scores (0.25 and 0.39, respectively). Overall,
the main point to remember here is that the quality scores assigned to these
query terms have been derived from POS, not lexical, statistics, extracted from
a whole collection. Hence, these term quality scores are completely document
independent.

POS tagging, extracting POS n-grams and computing term quality take place
once at indexing time, with negligible overhead.

3.2 Integrating Term Quality to Term Weighting

Section 3.1 introduced a general quality measure for terms, which is document-
independent. More simply, the proposed term quality measures how informative
a term generally is, and not how relevant a term is to another. In order for such
a general quality measure to be used in retrieval, it needs to be integrated with
relevance weighting, i.e. classical term weighting that determines the relevance
of a term to a document. We present how we integrate the proposed term quality
to term weighting in this section.
2 POS n-grams contain POS tags, not terms. By term ‘contained’ in a POS n-gram

we mean a term that, when tagged, has its POS tag captured in a POS n-gram.
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We estimate the relevance R(d, Q) between a document d and a query Q, as:

R(d, Q) =
∑

t∈Q

w(t, d) · qtw (3)

where t is a term in Q, w(t, d) is the weight of term t for a document d, and qtw
is the query term weight. w(t, d) can be computed by different weighting models
in different ways [1,6,14]. All these models however use the frequency of a term
in a document (tf) one way or another. For example, for BM25 [14]:

w(t, d) = w(1) · (k3 + 1) · qtf
k3 + qtf

· tfn (4)

where k3 is a parameter, qtf is the query term frequency, and tfn is the nor-
malised term frequency in a document, given by:

tfn =
(k1 + 1) · tf

tf + k1 · (1 − b + b · l
avg l )

(5)

where k1 & b are parameters, and l ( avg l) is the document length (average
document length in the collection).

In Equation (4), w(1) is the weight of a term in the query, given by:

w(1) = log · N − n + 0.5
n + 0.5

(6)

where N is the number of all documents in the collection, and n is the number of
documents containing term t. Note that w(1) is the inverse document frequency
(idf) component of BM25.

To recapitulate, tf is used as an integral part of BM25 to compute the rele-
vance of a document to a query (Equation (5)).

Our aim is to show how w(t, d) can be altered to include our proposed term
quality. We extend weighting models with term quality (tqs), computed using
Equation (2), by altering term frequency (tf) in the w(t, d) component (see
Equation (3)) of each weighting model, as follows:

tfq = tf · 1
1 − tqs

(7)

where tfq is the term frequency that is altered by the term quality score, tf is the
original term frequency of term t in a document, and tqs is the proposed term
quality. The idea here is to boost the discriminative effect of term frequency
with knowledge about how informative a term generally is in language. The
reason why we use 1 / (1 - tqs), instead of raw tqs, is explained at the end of
this section. The main point to remember here is that by using term quality
to alter term frequency, we integrate it into the weighting model as part of the
w(t, d) component, and not externally (e.g. as a prior). Note that the integration
proposed (Equation (7)) is one among several possible and potentially more
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Fig. 1. tqs (computed using Equation (2)) across its value range (min − max=0-1)

sophisticated ways of integrating term quality to the term weighting model. Our
focus is to initially test if term quality works for retrieval, and not yet to optimise
its integration into term weighting.

We have shown how we integrate term quality to the weighting model by
multiplying it to term frequency before the relevance of a document to a query
is ‘weighted’. In fact, this integration takes place even before term frequency is
normalised with respect to document length. We do not know what the effect of
normalisation will be. In this work, we assume that normalising term frequency
should not affect the integration of term quality into the model. However, this
assumption is worth testing in the future.

Why do we use 1 / (1 - tqs) instead of tqs? We know that term quality can
be between 0 and 1. Figure 1 plots term quality for values within this range.
Note that we plot tqs as a simple function here, meaning the x-axis is simply the
arguments of the function. The distribution of term quality across its value range
is the dotted line. We see that a simple transformation of tqs, namely 1 / (1 -
tqs), widens the value range considerably (solid line). We assume that widening
the value range of the proposed term quality will render it more discriminative,
and this is why we prefer it over the raw tqs, when integrating it to the weighting
model.

Implementation-wise, integrating term quality to the weighting model takes
place when documents are matched to queries, and consists of a simple look-up
of POS n-gram statistics in the IR system’s inverted file. This is done simulta-
neously to the usual term statistics look-up, with negligible overhead.

4 Evaluation

We aim to test whether integrating the proposed term quality score into weight-
ing models can enhance retrieval performance. We use two standard TREC
collections, namely WT10G (TREC 2000-2001), which contains 1.69 million
Web documents (10GB), and Disks 4&5 (TREC 2004), which contain 528 thou-
sand mainly newswire documents (2GB). We remove the Congressional Record
from Disks 4&5, according to TREC 2003-2004 settings. We use topics 451-550
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Table 2. Weighting model parameters (b for BM25, c for PL2)

WT10G Disk 4&5
default optimal default optimal

b=0.75, c=1.00 b=0.27, c=13.13 b=0.75, c=1.00 b=0.34, c=12.00

(WT10G) and topics 301-450 & 601-700 (Disks 4&5) to retrieve relevant docu-
ments. We use short topics (title-only) because they are more representative of
real user queries. For indexing and retrieval, we use the Terrier IR platform [10],
and apply stopword removal and Porter’s stemming during indexing.

To compute the term quality score, we POS tag WT10G, using the TreeTag-
ger, because it is fast (∼10,000 tokens/sec) and has a low error rate (∼3.8%) [17].
Following [7], we extract POS n-grams of length n= 43 from the collection, and
compute their content load using Equation (1), with ρ = 0.17.

To match documents to query terms, we use BM25 [14] and PL2 from the
Divergence From Randomness (DFR) framework [1]. Each of these models treats
the matching process differently, giving us a varied setting for our experiments.
Each model has a term frequency normalisation parameter (b for BM25, and c for
PL2). These parameters can be tuned according to query/collection statistics,
and can affect retrieval performance considerably [1].

To evaluate the impact of integrating term quality to the weighting model
upon retrieval performance, with the original weighting models as a baseline,
we conduct three series of experiments. Throuhgout, we use the mean aver-
age precision (MAP) to evaluate retrieval performance. 1) We set all weighting
model parameters to default/recommended values. (See [14] for default b values;
c values are recommended at [1] 4.) 2) To test the effect of our approach on a
stronger baseline than that of default values, we optimise all weighting model tf
normalisation parameters for MAP, by training using data sweeping and simu-
lated annealing over a large range of values. We optimise the baseline for MAP
and use the same parameter for the weighting model with the term quality (i.e.
we assume that the optimal b value for BM25 will also be optimal for BM25
with term quality). All parameter values used are shown in Table 2. 3) To raise
even more the baseline, we use optimal values and query expansion (QE), which
is an automatic performance-boosting technique that extracts the most relevant
terms from the top retrieved documents, and uses them to expand the initial
query. The expanded query is then used to retrieve documents anew. For query
expansion, we use the Bo1 DFR weighting model [1], and extract the 30 most
relevant terms from the top 5 retrieved documents, which is the recommended
setting [1]. Table 3 displays the evaluation results.

Table 3 shows that, at all times, the proposed term quality improves MAP,
over the original weighting models, with a statistical significance (Wilcoxon
matched-pairs signed-ranks test) for Disks 4&5. This conclusion is consistent
3 varying n between 3 and 6 gives similar results to the ones reported here.
4 c values are also recommended at:

http://ir.dcs.gla.ac.uk/terrier/doc/dfr description.html
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Table 3. MAP scores using weighting models with default/optimised parameters and
query expansion (QE); baseline = original weighting model; term quality = weighting
model with term quality; * (**) = stat. significance at p<0.05 (p<0.01) with Wilcoxon
matched-pairs signed-ranks test.

WT10G Disks 4&5

settings model baseline term quality baseline term quality

default
BM25 0.1874 0.1923 (+2.6%) 0.2363 0.2425 (+2.6%**)
PL2 0.1753 0.1846 (+5.3%**) 0.2242 0.2348 (+4.7%**)

optimised
BM25 0.2096 0.2104 (+0.4%) 0.2499 0.2549 (+2.0%**)
PL2 0.2093 0.2112 (+1.9%) 0.2530 0.2532 (+0.1%*)

optimised + QE
BM25 0.2362 0.2440 (+3.3%) 0.2933 0.2985 (+1.8%**)
PL2 0.2241 0.2276 (+1.6%) 0.2966 0.2980 (+0.8%**)
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Fig. 2. WT10G in top row, Disks 4&5 in bottom row. The x axis is the weighting
model parameter (b for BM25, c for PL2). The y axis is the Mean Average Precision.

for two different weighting models, with and without query expansion, for 350
topics and for two different collections, hence it is a solid indication that en-
riching term frequency with the proposed term quality can enhance retrieval.
This finding is also supported by Figure 2, which shows the effect of varying the
weighting model parameters without term quality (dot) and with term quality
(circle), for the two collections. Two trends emerge in Figure 2: 1) the baseline
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enriched term weights
original term weights

Fig. 3. BM25 term weights for all 350 queries for the top retrieved document, without
tqs (original) and with tqs (enriched)
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Fig. 4. tf component of BM25 term weight, without and with tqs

and term quality lines have similar shapes throughout, and 2) the term quality
line (circle) moves generally at higher MAP values than the baseline line (dot).
This means that our integration of term quality to the weighting model helps
retrieval in a consistent way. This consistency can explain the fact that the op-
timal tf normalisation values are very similar and sometimes identical for the
baseline and for using term quality.

Figure 3 shows an example of the effect of integrating term quality into BM25
as a histogram. We plot the weight of all 350 queries for the top retrieved docu-
ment as a function, similarly to Figure 1. We compare the term weights computed
by the baseline BM25 (solid line) and BM25 with term quality (dotted line)5.
High term weights mean that a term is very relevant to the document, and vice

5 PL2 behaves very similarly.
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Spearman’s ρ = 0.55

Fig. 5. idf versus tqs for all query terms used

versa. We see that term quality generally renders high term weights even higher
and low term weights even lower. Hence, term quality appears to make the re-
sulting term weights more discriminative, which could explain the improvement
in retrieval performance shown in Table 3.

Figure 4 plots the effect of integrating term quality to term frequency, ignoring
term frequency normalisation, and for three different term quality values. The
x axis is the term frequency, and the y axis is the term weight computed using
BM25. We plot the original term frequency (circle), term frequency with low term
quality (dot), term frequency with high term quality (star), and term frequency
with very high term quality (cross). We see that integrating term quality never
breaks the non-linear saturation of term frequency. More simply, the gain (in
informativeness) in seeing the term for the first time is much greater, than seeing
that term subsequently, even after we have integrated our proposed term quality
to term frequency. This is very similar to the effect of inverse document frequency
upon term frequency [15] (this point is further discussed in the next paragraph).
This shows that term quality is compatible to term frequency. Note that the effect
of term quality on term frequency becomes more noticeable as term frequency
decreases. More simply, a term with high tf will be boosted less by tqs, than a
term with low tf . This is expected, given the difference in magnitude between
term quality (between 0-1) and term frequency (�1).

Finally, Figure 5 shows the relation between inverse document frequency (idf)
and term quality (tqs), for the terms of all 350 queries used in these experiments.
We see that, indeed, our proposed measure of term quality is correlated to inverse
document frequency (Spearman’s ρ = 0.55), as indicated previously (Figure 4).
This correlation indicates that our proposed term quality is compatible to term
frequency, and can explain why intergating tqs into the weighting model overall
enhances retrieval performance.
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5 Conclusion

We introduced a novel notion of term quality, which measures how informative a
term generally is, regardless of a document/query. We derived this measure us-
ing part of speech (POS) information extracted from a corpus as POS n-grams.
We tested this term quality in IR, by integrating it to the term frequency com-
ponent of two weighting models. We reasoned that if this integration resulted
in more accurate term weights, and retrieval performance improved, then we
could consider term quality as useful evidence. Experimental results on two stan-
dard TREC collections, with default and optimal settings, and query expansion,
showed that retrieval performance with term quality improved consistently, and
with a statistical significance at all times for one collection, over strong baselines.

The main contribution of this work consists in posing the question: Can there
be such a thing as an intrinsic notion of term quality? We showed that yes,
there can, and also how to practically apply it to enhance retrieval performance.
Future work includes exploring the integration of term quality into the retrieval
process, as well as evaluating it in other tasks, such as text classification.
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Abstract. In this paper we propose a novel sentence retrieval method
based on extracting highly frequent terms from top retrieved documents.
We compare it against state of the art sentence retrieval techniques, in-
cluding those based on pseudo-relevant feedback, showing that the ap-
proach is robust and competitive. Our results reinforce the idea that top
retrieved data is a valuable source to enhance retrieval systems. This
is especially true for short queries because there are usually few query-
sentence matching terms. Moreover, the approach is particularly promis-
ing for weak queries. We demonstrate that this novel method is able to
improve significantly the precision at top ranks when handling poorly
specified information needs.

Keywords: Information Retrieval, Sentence Retrieval, Term Frequency.

1 Introduction

Retrieval of sentences that are relevant to a given information need is an im-
portant problem for which an effective solution is still to be found. Many Infor-
mation Retrieval (IR) tasks rely on some form of sentence retrieval to support
their processes [13]. For example, question answering systems tend to apply sen-
tence extraction methods to focus the search for an answer on a well-selected set
of sentences or paragraphs [5]. In query-biased summarization, there is a large
body of work dedicated to building summaries using sentences extracted from
the documents [12]. Topic detection and tracking (TDT) is another task where
the availability of effective sentence retrieval techniques is crucial in order to
isolate relevant material from a dynamic stream of texts (e.g. news) [19]. In web
IR, a good ranking of sentences, in decreasing order of estimated relevance to
the query, can also act as a solid tool to improve web information access [25].
Sentence retrieval is therefore a core problem in IR research and advances in this
area could potentially trigger significant benefits across the field.

We adopt the sentence retrieval problem as defined in the TREC novelty
tracks [8,18,17]. Given a textual information need, an initial ranking of docu-
ments is produced using some effective retrieval method and, next, the systems
should process the retrieved documents to locate the sentences that are relevant

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 217–228, 2007.
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to the information need1. This is a realistic task. For instance, typical web search
engines have to address similar problems when building query-biased summaries.

The problem of sentence retrieval is far from easy. Sentences are very short
pieces of texts and, therefore, the sentence-query matching process has difficul-
ties. Many strategies, techniques and models have been proposed to address this
problem. Despite the variety of the approaches investigated, very simple vari-
ations of tf/idf measures can be labeled as state of the art sentence retrieval
methods [2,11].

We are not interested here in proposing a new model for sentence retrieval,
but we will extend a competitive sentence retrieval method to incorporate the
influence from terms which are highly frequent in the retrieved set of documents.
This is inspired by well-known research in query-biased summarization [20] that
estimated the set of significant words of a document using the number of term
occurrences within each document. We adapt this intuition to our current re-
trieval scenario. Rather than focusing on a single document to estimate which
words are significant, we will estimate the significant terms from the top re-
trieved documents. The set of highly ranked documents for a given query is a
very valuable source of information and, ideally, it provides a vocabulary focused
on the query topics. Hence, we compute term statistics globally in the retrieved
set of documents and adjust the tf/idf scores to take into account the contribu-
tion from the most significant terms. In this way, sentences that do not match
any query term can still be retrieved provided that they contain some significant
terms.

In the experiments we show that the approach is simple but very effective.
It outperforms significantly a competitive baseline under three different bench-
marks. The method is able to improve both precision at 10 sentences and the
F measure. We also compare the relative merits of this method against pseudo-
relevance feedback, showing that our approach is much more robust, especially
when queries are poor.

The rest of the paper is organized as follows. Section 2 reviews some papers
related to our research. In section 3 we explain the foundations of the method
proposed and the evaluation conducted is reported in section 4. The paper ends
with some conclusions and future lines of work.

2 Related Work

Sentence retrieval is an active research area where many researchers have pro-
posed different alternatives to tackle the problem. Many studies applied query
expansion either via pseudo-relevance feedback [6] or with the assistance of a
terminological resource [27,9]. Nevertheless, the effect of pseudo-relevance feed-
back is very sensitive to the quality of the initial ranks and it is quite difficult
to apply it effectively across different collections and types of queries [26]. More
1 The TREC novelty tracks propose two different tasks: retrieval of relevant sentences

and retrieval of relevant and novel sentences but we are only interested here in the
first task.
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evolved methods, such as selective feedback [1], are more stable but they usually
require training data. On the other hand, to expand queries with synonyms or
related terms from a lexical resource is problematic because noisy terms can
be easily introduced into the new query [21]. Moreover, a large terminological
resource, with good coverage, is not always available. As a matter of fact, lexical
expansion was not significantly better than purely statistical expansion meth-
ods in the sentence retrieval tasks of the TREC novelty tracks [8,18,17]. Other
expansion approaches based on co-occurrence data have been proposed. For in-
stance, in [27] the authors expand the query with terms that co-occur highly
with the query terms in the retrieved documents. Co-occurrence statistics from
a background corpus have been applied in [15]. Nevertheless, there is not much
evidence that these approaches can outperform the standard pseudo-feedback
methods.

Rather than expanding queries with new terms, other studies have focused
on improving the matching process by analyzing carefully the nature of the sen-
tence components. In this line, in [11], patterns such as phrases, combinations
of query terms and named entities were identified into sentences and the sen-
tence retrieval process was driven by such artifacts. Although this technique
was effective for detecting redundant sentences, it was not significantly better
than a regular tf/idf baseline for finding relevant sentences. In [7], terms in sen-
tences were categorized into four query-based categories, namely: highly relevant,
scarcely relevant, non-relevant and highly non-relevant. Nevertheless, this classi-
fication was mainly guided by the topic subfield in which the term occurs (title,
descriptive, narrative). Unlike this work, our approach uses the number of term
occurrences in the retrieved set of documents as the main factor to estimate the
significance of a term.

The work by Zhang and his colleagues [28] deserves special attention. They
presented a high performing sentence retrieval system which combined query
expansion and sentence expansion using Wordnet. Besides the linguistic-based
expansion, they proposed two impact factor measures to estimate the signifi-
cance of the query terms. The utility of these measures in removing some query
terms (low impact factor words) was empirically evaluated but no benefits were
observed. One of the impact factor measures was based on the frequency of
the term in relevant documents. The intuition was that highly frequent terms
are very significant and, therefore, they should not be removed from the query.
We pursue a similar idea but with a different objective. Rather than polishing
queries, our aim is to define a measure of how central a sentence is in the context
of the retrieved documents. The highly frequent words in the retrieved set are
the foundations of this measure.

In query-biased summarization, the notion of significant word (term with
high frequency in the document) was applied for sentence scoring purposes [20].
This was combined with aspects such as term location (the presence of a term
in the title of the document or in the leading paragraphs produced a positive
weight) and some query-oriented weights to produce a final score for the sen-
tences. Our method to adjust the basic tf/idf method is inspired by the notion
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of significant word applied in [20] but, rather than estimating the significant
terms for a single document, we are interested in computing the significant words
in a set of documents. As a matter of fact, the set of highly ranked documents for
a given query is a good container of topic-related terms, as demonstrated by the
success of different expansion methods for document retrieval [23]. Some papers
have applied the results of [20] to other environments. For instance, in [24], the
effects of query-biased summaries in web searching were studied. The summaries
are constructed from sentences scored using title, location, relation to the query
and text formatting information. However, the notion of significant words, as
proposed in [20], has not received major attention since then. We believe that it
is interesting to study the effect of such notion for sentence retrieval.

3 Highly Frequent Terms and Sentence Retrieval

The main component in our method consists of extracting a set of significant
words from the set of documents retrieved for a given query. Ideally, these terms
characterize well the query topics and, therefore, they can be used for improving
sentence retrieval. Given a set of highly ranked documents, Rq, terms occur-
ring more than a certain number of times in this set are collected into a set of
significant terms (STq) as follows2:

STq = {t ∈ Vq|tft,Rq > mno} (1)

where Vq is the set of unique terms appearing in Rq, tft,Rq is the term count
of t in Rq (tft,Rq =

∑
D∈Rq

tft,D) and mno is a parameter that determines
the minimum number of occurrences required for a term to be considered as
significant.

In order to select the sentences within the retrieved set of documents which
are relevant to the query, a combination of a regular tf/idf score and a significant
term score is applied. The tf/isf score (isf stands for inverse sentence frequency)
is:

tf isf(s, q) =
�

t∈q

log(tft,q + 1)log(tft,s + 1)log(
n + 1

0.5 + sft
) (2)

where sft is the number of sentences in which t appears, n is the number of
sentences in the collection and tft,q (tft,s) is the number of occurrences of t in q
(s). This formula was applied successfully in TREC novelty tracks for sentence
retrieval purposes [2]. Along this paper this method will be referred to as TF/ISF.

Given a query q, the significant term score of a sentence s, htf(s, q), is defined
as:

htf(s, q) =
√

|Vs ∩ STq| (3)

2 We include q as a subindex to stress the fact that this set is query-dependent. In
our experiments, Rq was fixed to be the set of documents supplied by the track’s
organizers (set of highly ranked documents associated to each query).
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where Vs is the set of unique terms appearing in s. The score depends on the
number of highly frequent terms in the sentence and the square root was intro-
duced to get the tf isf and htf scores on a similar scale and, therefore, combine
them adequately.

The sentence-query similarity is simply defined as the sum of the tf isf and
htf scores. Hereafter, this sentence retrieval method will be referred to as the
HTF method. The combination method applied here is intentionally simplistic
and we consider it as a first attempt to mix these factors. More evolved (and
formal) methods will be studied in the near future.

Sentences with a poor overlap with the query can still be retrieved provided
that they contain terms which are significant in the retrieved set. This method
promotes the retrieval of sentences which are somehow central for the query
topics. It is also a way to tackle the well-known vocabulary mismatching problem
in retrieval engines. The notion of term significance is equated here to high
term frequency in the retrieved set. Note that in our experiments stopwords
were removed. This is important because, otherwise, the STq sets would be
likely populated by many common words, which would introduce much noise.
Of course, many other alternatives could have been proposed to estimate term
significance (e.g. based on successful methods such as Local Context Analisis [26]
or Divergence from Randomness [3]). Nevertheless, the present study is focused
on a simple term frequency-based method which has proved successful in query-
biased summarization [20]. A complete comparison of different alternatives to
estimate term significance for sentence retrieval is out of the scope of this paper.

The parameter mno determines the size of the set STq and, consequently,
influences directly the weight of the htf component in the similarity formula.
Low mno values (e.g. mno < 5) do not make sense because the set STq would
contain most of the terms in the retrieved set. This set would have many non-
significant terms and the htf component in the formula above would be merely
promoting long sentences. On the other hand, very high mno values are not
advisable either because STq would be very small (empty in the extreme case)
and, therefore, the method would be roughly equivalent to the basic TF/ISF
technique. In this work, we test the effectiveness of our method with varying
number of minimum occurrences and analyze the sensitiveness of the method
with respect to the size of the set of significant terms. In the future, we will also
study other alternatives, such as query-dependent mno values estimated from
Rq.

The HTF method can be actually regarded as a form of pseudo-relevance
feedback (at the document level) aimed at estimating the importance of the
sentences within a retrieved set (with no query expansion). Term selection is
done before sentence retrieval and the selected terms are not used for expan-
sion (the terms are used for estimating the significance of a sentence). On the
other hand, the standard query expansion via pseudo-relevance feedback or lo-
cal co-occurrence is strongly sensitive to the quality of the original query [26].
If we use a few top ranked sentences to expand the query then it is likely that
we end up introducing some noise in the new query. We expect that the highly
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frequent terms approach is more robust because, rather than doing first a sen-
tence retrieval process to get some new terms, it analyzes globally the set of
retrieved documents to locate important sentences. It seems reasonable to think
that the behaviour of this method is more stable. One can rightly argue that an
original poor query will also be harmful in our approach because the quality of
the document ranking will be low. Nevertheless, once we have the rank of doc-
uments, the adjustment that we propose (htf score) does not involve the query
text. On the contrary, pseudo-relevance feedback methods apply subsequently
a sentence retrieval process from the query terms and, hence, they are much
more dependent on the quality of the queries (the query text is used twice).
Other evolved expansion methods, such as Local Context Analysis [26], which
has proved to be more effective and robust than pseudo-relevance feedback for
document retrieval, require also a second usage of the original query text for re-
trieving passages and, next, phrases are selected from the top passages to expand
the query. The process is thus rather complicated whereas the method applied
here is much simpler.

4 Experiments

The performance of the HTF method has been tested using three different col-
lections of data. These datasets were provided in the context of the TREC-2002,
TREC-2003 and TREC-2004 novelty tracks [8,18,17]. There are no newer TREC
collections suitable for our experiments because we need relevance judgments at
the sentence level. This sort of judgments is only available in the novelty track,
whose last edition took place in 2004. The novelty track data was constructed
as follows. Every year there were 50 topics available. In TREC-2002, the topics
were taken from TRECs 6, 7 and 8 (the complete list of topics chosen for the
novelty track can be found in [8]). In 2003 and 2004, the topics were created
by assessors designated specifically for the task [18,17] (topics N1-N50 and N51-
N100). For each topic, a rank of documents was obtained by NIST using an
effective retrieval engine. In 2002 and 2003 the task aimed at finding relevant
sentences in relevant documents and, therefore, the ranks included only relevant
documents (i.e. given a topic the set of relevant documents to the topic were
collected and ranked using a document retrieval engine). On the contrary, the
TREC-2004 ranks contained also irrelevant documents (i.e. the initial search for
documents was done against a regular document base, with relevant and irrele-
vant documents). Note that this means that the irrelevant documents are close
matches to the relevant documents, and not random irrelevant documents [17].
In any case, the ranks of documents contained at most 25 relevant documents
for each query.

The documents were segmented into sentences, the participants were given
these ranks of sentence-tagged documents and they were asked to locate the
relevant sentences. The relevance judgments in this task are complete because the
assessors reviewed carefully the ranked documents and marked every sentence
as relevant or non-relevant to the topic. In TREC-2002, very few sentences were
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judged as relevant (approximately 2% of the sentences in the documents). In
TREC-2003 and TREC-2004 the documents were taken from the AQUAINT
collection and the average percentage of relevant sentences was much higher than
in 2002 (approximately 40% in 2003 and 20% in 2004). This therefore shapes an
assorted evaluation design in which we can test the HTF method under different
scenarios and conditions. We focus our interest on short queries, which are by
far the most utilized ones, especially in environments such as the web [16]. In
our experiments, short queries were constructed from the title tags of the TREC
topics.

We used two different evaluation measures: precision at 10 sentences retrieved
and the F-measure, which was the official measure in the TREC novelty exper-
iments3. Regarding statistical significance tests, we applied two different tests,
the t-test and the Wilcoxon test, and we only concluded that a given difference
between two runs was significant when both tests agree (with a 95% confidence
level).

To ensure that the baseline was competitive we ran some initial experiments
with other popular retrieval methods. We experimented with Okapi BM25 [14]
and a Language Modeling approach based on Kullback-Leibler Divergence (KLD)
as described in [10] (with Dirichlet smoothing). The performance of BM25 is in-
fluenced by some parameters: k1 controls the term frequency effect, b controls
a length-based correction and k3 is related to query term frequency. We tested
exhaustively different parameter configurations (k1 between 0 and 2 in steps of
0.2, b between 0 and 1 in steps of 0.1 and different values of k3 between 1 and
1000). Similarly, we experimented with the KLD model for different values of
the μ constant, which determines the amount of smoothing applied (μ = 10,
100, 500, 1k, 3k, 5k). Results are reported in Table 1. A run marked with an
asterisk means that the difference in performance between the run and TF/ISF
is statistically significant. In all collections, there was not statistically significant
difference between the TF/ISF run and the best BM25 run. We also observed
that BM25 was very sensitive to the parameter setting (many BM25 runs per-
formed significantly worse than TF/ISF). On the other hand, KLD was inferior
to both TF/ISF and BM25. These results reinforced previous findings about the
robustness of the TF/ISF method [2,11] and demonstrated that this method is
a very solid baseline.

We also tried out different combinations of the standard preprocessing strate-
gies (stopwords vs no stopwords, stemming vs no stemming). Although there was
no much overall difference, the runs with stopword processing and no stemming
were slightly more consistent. Since the TF/ISF method takes the idf statistics
from the sentences in the documents available for the task (which is a small set of
sentences), we were wondering whether better performance may be obtained us-
ing idf data from a larger collection. To check this, we indexed a large collection

3 The F-measure is the harmonic mean (evenly weighted) of sentence set recall and
precision. In the TREC-2002 experiments, we computed the F-measure using the
top 5% of the retrieved sentences and in the other collections we used the top 50%
of the retrieved sentences. Similar thresholds were taken in TREC experiments [2].
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Table 1. Comparing different baselines

TREC-2002
TF-ISF BM25 KLD

best run k1 = .4, b = 0, k3 = 1 μ = 3000
P@10 .19 .19 .16
F .188 .190 .172*

TREC-2003
TF-ISF BM25 KLD

best run k1 = .6, b = 0, k3 = 1 μ = 1000
P@10 .74 .76 .73
F .512 .512 .510*

TREC-2004
TF-ISF BM25 KLD

best run k1 = .2, b = 0, k3 = 1 μ = 500
P@10 .43 .44 .41
F .370 .371 .369

Table 2. Evaluation results

TREC-2002
HTF, mno= PRF, # exp terms=

TF/ISF 7 10 15 20 5 10 20 50
P@10 .19 .23* .22* .22 .22 .19 .20 .17 .20
F .188 .197 .197 .197 .192 .190 .181 .181 .178

TREC-2003
P@10 .74 .78* .78 .79* .79* .78* .79* .78 .77
F .512 .560* .559* .555* .554* .535* .550* .558* .560*

TREC-2004
P@10 .43 .51* .50* .50* .50* .48* .48* .49* .46
F .370 .391* .389* .387* .388* .376 .382 .386* .392*

of documents (the collection used in the TREC-8 adhoc experiments [22]) and
ran some experiments where the idf statistics were taken from this index. The
original TF/ISF method computed at the sentence level over the small document
base was superior. It appears that the small index of sentences is good enough for
sentence retrieval (at least for these short queries). We therefore set the baseline
to be the original TF/ISF approach with stopword and no stemming4.

In the HTF experiments we took the set of retrieved documents for each
query and computed the set of highly frequent terms (STq). Several experiments
were executed with varying minimum number of occurrences (mno) namely, 7,
10, 15, 205. Results are shown in Table 2 (columns 3-6). The results are very
encouraging. All the HTF runs produced better performance than the baseline’s
performance. The improvements are small in TREC-2003. This is not surprising
because there is a high population of relevant sentences in this collection (note
that the baseline performance is very high, e.g. P@10=74%) and, therefore, it is
difficult to get further benefits. There are so many relevant sentences that there is

4 We use short queries, while the groups participating in the TREC novelty tracks
were allowed to use the whole topic. This means that the results presented here are
not comparable to any of the results reported in the novelty tracks.

5 In [20], terms occurring seven or more times in a document were regarded as signif-
icant for building a query-biased summary.
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no need to apply an evolved method to get a reasonably good top 10. On the other
hand, when the retrieved documents have less relevant sentences (2002 and 2004)
the HTF retrieval approach produces very significant improvements. It should
be noted that there was not a single HTF run yielding worse performance than
the baseline. Actually, the method is quite insensitive to the minimum number of
occurrences for a term to be considered highly frequent. The four values tested
yielded very similar performance. This is a nice feature of the approach as it
does not seem problematic to set a good value. Furthermore, the improvements
are apparent in both performance ratios. This means that the HTF technique
works effectively not only for supplying ten good sentences but also consistently
provides relevant sentences across the whole rank.

We also wanted to study the relative merits of HTF against expansion via
pseudo-relevance feedback (hereafter, PRF). Although HTF and PRF are in-
trinsically distinct and both alternatives could actually complement each other,
it is still interesting to analyze how robust the HTF method is in comparison
with PRF. We experimented with query expansion using an standard PRF tech-
nique [4] which consists of adding the most frequent terms from the top ranked
documents. This technique, adapted to sentence retrieval (i.e. selecting expan-
sion terms from the top ranked sentences), has proved to be successful to improve
the performance of sentence retrieval [10]. There is no empirical evidence that
any other advanced query expansion method (e.g. Local Context Analysis [26])
works better than PRF in sentence retrieval.

Since the characteristics of the collections are very different to one another, the
comparison between HTF and PRF is general enough, with varying conditions of
the type of data and the amount of relevant material. For instance, we expected
modest improvements from PRF in 2002 data due to the scarcity of relevant
material, and much better PRF results in 2003 and 2004 collections because
there are more relevant sentences. Another interesting point to study is the effect
of the number of expansion terms. This number affects performance in a critical
way (many terms imply usually too much noise in the new query). Therefore
we want to check this effect in sentence retrieval and compare it against the
behaviour of the HTF approach.

A pool of pseudo-relevance feedback experiments was designed as follows.
Given the TF/ISF rank, queries were expanded with the 5, 10, 20 or 50 highest
frequent terms in the top 10 sentences. Next, the set of sentences was re-ranked
using the new queries. Results are reported in Table 2 (columns 7-10). PRF is
much less consistent than HTF. The average performance is clearly lower than
the HTF’s average performance. The number of PRF runs whose performance
is significantly better than the baseline’s performance is smaller than the corre-
sponding number of HTF runs. Furthermore, some PRF runs performed worse
than the baseline. Summing up, the HTF method works at least as well as PRF
techniques and it is less sensitive to variations in its parameter. It is important
to note that the HTF method is also convenient for efficiency reasons. It does
not require an initial sentence retrieval process and the STq sets can be easily
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Table 3. Poorest queries

TREC-2002
TF/ISF HTF PRF

P@10 .03 .09 .03
7(+) 0(-) 8(=) 1(+) 2(-) 12(=)

TREC-2003
TF/ISF HTF PRF

P@10 .39 .52 .50
9(+) 3(-) 3(=) 10(+) 2(-) 3(=)

TREC-2004
TF/ISF HTF PRF

P@10 .13 .21 .15
8(+) 2(-) 5(=) 4(+) 4(-) 7(=)

computed from a regular inverted file (summing the term counts in the retrieved
documents).

Let us now pay attention to the behaviour of these sentence retrieval meth-
ods when handling poor queries. Such queries are very problematic for retrieval
systems and it is important to analyze them in depth. For each collection, we
analyzed the 15 queries that had yielded the lowest P@10 figures with the base-
line method6. In Table 3 we report the P@10 values obtained with the TF/ISF
run and the best HTF and PRF runs. For the HTF and PRF runs, we also show
the number of queries whose P@10 is better than (+), worse than (-) or equal
to (=) the P@10 obtained with the baseline run. The results are very conclu-
sive. In TREC-2003 data, where the 15 worst topics retrieve a reasonably good
number of relevant sentences in the top 10 (39% on average), both methods per-
form roughly the same. On the contrary, in TREC-2002 and TREC-2004, where
the initial ranks are quite poor (3% and 13% of relevant sentences on average,
respectively), the HTF method is much more robust and performs significantly
better than PRF. The HTF method is consistent even in the presence of weak
queries. With such queries, pseudo-relevance feedback suffers from poor perfor-
mance (in some cases, it does not outperform the baseline), whilst the HTF runs
still provide solid improvements. This is very valuable because it is usually easy
to improve performance when the initial rank has a good population of relevant
material but, on the other hand, it is quite hard to improve performance when
the initial rank is not good enough. The ability of the HTF method to improve
significantly the precision at top ranks when handling poor queries is an impor-
tant property of this sentence retrieval approach. This suggests that this method
is especially suitable for real applications with poorly specified information needs
where users only want to go through a small number of sentences.

Having demonstrated that the HTF technique is competitive and outperforms
solid sentence retrieval methods when initial ranks are poor, it is important
to mention that it is actually compatible with pseudo-relevance feedback. Our
method is capable of estimating the centrality of sentences within a retrieved set
6 For reproductability purposes, these queries were: T2002: 305,312,314,315,330,

377,381,406,411,420,432,323,325,326,339. T2003: 48,12,14,25,19,20,1,45,24,28,29,30,
5,22,36. T2004: 57,77,61,71,86,93,94,97,56,62,65,70,78,80,84.
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of documents. This effect could be combined with an expansion approach from a
few top ranked sentences and, therefore, retrieval engines can incorporate both
techniques. With weak queries the application of pseudo-relevance feedback is
not advisable but stronger queries could attain benefits from the combined use
of centrality and expansion.

5 Conclusions and Future Work

We have proposed a novel sentence retrieval mechanism based on extracting
highly frequent terms from a retrieved set of documents. The experiments re-
ported in this paper demonstrate that this approach outperforms clearly state-
of-the-art sentence retrieval methods in the context of a query retrieval use case.
We also showed that our method is more robust than standard pseudo-relevance
feedback methods and it is simpler because it does not require an initial sentence
retrieval process. The method proposed here is especially valuable in terms of
the precision at top ranks when queries are weak. In the future we will explore
more formal methods to combine the centrality and retrieval scores. We will also
study alternative ways to estimate term significance.
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Abstract. Compression boosting (Ferragina & Manzini, SODA 2004)
is a new technique to enhance zeroth order entropy compressors’ per-
formance to k-th order entropy. It works by constructing the Burrows-
Wheeler transform of the input text, finding optimal partitioning of the
transform, and then compressing each piece using an arbitrary zeroth
order compressor. The optimal partitioning has the property that the
achieved compression is boosted to k-th order entropy, for any k. The
technique has an application to text indexing: Essentially, building a
wavelet tree (Grossi et al., SODA 2003) for each piece in the partition-
ing yields a k-th order compressed full-text self-index providing efficient
substring searches on the indexed text (Ferragina et al., SPIRE 2004).
In this paper, we show that using explicit compression boosting with
wavelet trees is not necessary; our new analysis reveals that the size of the
wavelet tree built for the complete Burrows-Wheeler transformed text is,
in essence, the sum of those built for the pieces in the optimal partition-
ing. Hence, the technique provides a way to do compression boosting
implicitly, with a trivial linear time algorithm, but fixed to a specific ze-
roth order compressor (Raman et al., SODA 2002). In addition to having
these consequences on compression and static full-text self-indexes, the
analysis shows that a recent dynamic zeroth order compressed self-index
(Mäkinen & Navarro, CPM 2006) occupies in fact space proportional to
k-th order entropy.

1 Introduction

The indexed string matching problem is that of, given a long text T [1, n] over
an alphabet Σ of size σ, building a data structure called full-text index on it,
to solve two types of queries: (a) Given a short pattern P [1, m] over Σ, count
the occurrences of P in T ; (b) locate those occ positions in T . There are several
classical full-text indexes requiring O(n log n) bits of space which can answer
counting queries in O(m log σ) time (like suffix trees [1]) or O(m + log n) time
(like suffix arrays [18]). Both locate each occurrence in constant time once the
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counting is done. Similar complexities are obtained with modern compressed
data structures [6,11,9], requiring space nHk +o(n log σ) bits (for some small k),
where Hk ≤ log σ is the k-th order empirical entropy of T . These indexes are
often called compressed self-indexes refering to their space requirement and to
their ability to work without the text and even fully replace it, by delivering any
text substring without accessing T .

The main building blocks in compressed self-indexes are the Burrows-Wheeler
transform T bwt [3] and function rankc(T bwt, i) that counts how many times
symbol c appears in T bwt[1, i]. Function rankc can be efficiently provided by
building the wavelet tree [11] on T bwt; this reduces the problem to rank queries
on binary sequences, which are already studied by Jacobson [14] in his seminal
work on compressed data structures. Using a more recent binary rank solution
[23] inside wavelet trees, one almost automatically achieves a compressed self-
index taking nH0+o(n log σ) bits of space [11,9,16]. Let us call this index Succinct
Suffix Array (SSA) following [16].

What has remained unnoticed so far is that SSA actually takes only nHk +
o(n log σ) bits of space. This result makes some of the more complicated tech-
niques to achieve the same result obsolete. However, our analysis builds on the
existence of the compression-boosted version of SSA [9], as we show that the
internal parts of the structures in the boosted version are compressed exactly
the same way in the basic SSA. This shows a remarkable property of wavelet
trees when used together with the encoding of Raman, Raman, and Rao [23].

In the following, we first define the entropy concepts more formally, then
explain the encoding in [23], wavelet trees [11], Burrows-Wheeler transform [3],
and compression boosting [7] in order to give our new analysis in a self-contained
manner. We conclude with the application to space-efficient construction of (dy-
namic) full-text self-indexes.

2 Definitions

We assume our text T = t1 . . . tn to be drawn from an alphabet {0, 1, . . . σ − 1}.
Let nc denote the number of occurrences of symbol c in T , i.e., nc = |{i | ti = c}|.
Then the zero-order empirical entropy is defined as H0(T ) =

∑
0≤c<σ

nc

n log n
nc

.
This is the lower bound for the average code word length of any compressor that
fixes the code words to the symbols independently of the context they appear
in.

A tighter lower bound for texts is the k-th order empirical entropy Hk(T ),
where the compressor can fix the code word based on the k-symbol context
following the symbol to be coded.1 Formally, it can be defined as Hk(T ) =∑

w∈Σk
nw

n H0(T |w), where nw denotes the number of occurrences of substring

1 It is more logical (and hence customary) to define the context as the k symbols
preceding a symbol, but we use the reverse definition for technical convenience. If
this is an issue, the texts can be handled reversed to obtain results on the more
standard definition. It is anyway known that both definitions do not differ by much
[8].
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w in T and T |w denotes the concatenation of the symbols appearing immediately
before those nw occurrences [19]. Substring w = T [i + 1, i + k] is called the k-
context of symbol ti. We take T here as a cyclic string, such that tn precedes t1,
and thus the amount of k-contexts is exactly n.

3 Previous Results

3.1 Entropy-Bound Structures for Bit Vectors

Raman et al. [23] proposed a data structure to solve rank and select (inverse of
rank) queries in constant time over a static bit vector A = a1 . . . an with binary
zero-order entropy H0. The structure requires nH0 + o(n) bits.

The idea is to split A into superblocks S1 . . . Sn/s of s = log2 n bits. Each
superblock Si is in turn divided into 2 log n blocks Bi(j), of b = (log n)/2 bits
each, thus 1 ≤ j ≤ s/b. Each such block Bi(j) is said to belong to class c if it
has exactly c bits set, for 0 ≤ c ≤ b. For each class c, a universal table Gc of

(
b
c

)

entries is precomputed. Each entry corresponds to a possible block belonging to
class c, and it stores all the local rank answers for that block. Overall all the Gc

tables add up 2b =
√

n entries, and O(
√

n polylog(n)) bits.
Each block Bi(j) of the sequence is represented by a pair Di(j) = (c, o), where

c is its class and o is the index of its corresponding entry in table Gc. A block
of class c thus requires log(c + 1) + log

(
b
c

)
bits. The first term is O(log log n),

whereas all the second terms add up nH0 + O(n/ log n) bits. To see this, note
that log

(
b
c1

)
+ log

(
b
c2

)
≤ log

(
2b

c1+c2

)
, and that nH0 ≥ log

(
b(n/b)

c1+...+cn/b

)
. The pairs

Di(j) are of variable length and are all concatenated into a single sequence.
Each superblock Si stores a pointer Pi to its first block description in the

sequence (that is, the first bit of Di(1)) and the rank value at the beginning
of the superblock, Ri = rank(A, (i − 1)s). P and R add up O(n/ log n) bits. In
addition, Si contains s/b numbers Li(j), giving the initial position of each of its
blocks in the sequence, relative to the beginning of the superblock. That is, Li(j)
is the position of Di(j) minus Pi. Similarly, Si stores s/b numbers Qi(j) giving
the rank value at the beginning of each of its blocks, relative to the beginning
of the superblock. That is, Qi(j) = rank(A, (i − 1)s + (j − 1)b) − Ri. As those
relative values are O(log n), sequences L and Q require O(n log log n/ logn) bits.

To solve rank(A, p), we compute the corresponding superblock i = 1 + �p/s�
and block j = 1 + �(p − (i − 1)s)/b�. Then we add the rank value of the cor-
responding superblock, Ri, the relative rank value of the corresponding block,
Qi(j), and complete the computation by fetching the description (c, o) of the
block where p belongs (from bit position Pi + Li(j)) and performing a (precom-
puted) local rank query in the universal table, rank(Gc(o), p−(i−1)s−(j−1)b).

The overall space requirement is nH0 + O(n log log n/ log n) bits, and rank is
solved in constant time. We do not cover select because it is not necessary to
follow this paper.

The scheme extends to sequences over small alphabets as well [9]. Let B =
a1 . . . ab be the symbols in a block, and call na the number of occurences of
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symbol a ∈ [1, q] in B. We call (n1, . . . , nq) the class of B. Thus, in our (c, o)
pairs, c will be a number identifying the class of B and o an index within the
class. A simple upper bound to the number of classes is (b + 1)q (as a class is a
tuple of q numbers in [0, b], although they have to add up b). Thus O(q log log n)
bits suffice for c (a second bound on the number of classes is qb as there cannot
be more classes than different sequences). Just as in the binary case, the sum of
the sizes of all o fields adds up nH0(A) + O(n/ logq n) [9].

3.2 Wavelet Trees and Entropy-Bound Structures for Sequences

We now extend the result of the previous section to larger alphabets. The idea
is to build a wavelet tree [11] over sequences represented using rank structures
for small alphabets.

A binary wavelet tree is a balanced binary tree whose leaves represent the
symbols in the alphabet. The root is associated with the whole sequence A =
a1 · · · an, its left child with the subsequence of A obtained by concatenating all
positions i having ai < σ/2, and its right child with the complementary subse-
quence (symbols ai ≥ σ/2). This subdivision is continued recursively, until each
leaf contains a repeat of one symbol. The sequence at each node is represented
by a bit vector that tells which positions (those marked with 0) go to the left
child, and which (marked with 1) go to the right child. It is easy to see that the
bit vectors alone are enough to determine the original sequence: To recover ai,
start at the root and go left or right depending on the bit vector value Bi at
the root. When going to the left child, replace i ← rank0(B, i), and similarly
i ← rank1(B, i) when going right. When arriving at the leaf of character c it
must hold that the original ai is c. This requires O(log σ) rank operations over
bit vectors.

It also turns out that operations rank and select on the original sequence can
be carried out via O(log σ) operations of the same type on the bit vectors of
the wavelet tree [11]. For example, to solve rankc(A, i), start at the root and go
to the left child if c < σ/2 and to the right child otherwise. When going down,
update i as in the previous paragraph. When arriving at the leaf of c, the current
i value is the answer.

A multiary wavelet tree, of arity q, is used in [9]. In this case the sequence
of each wavelet tree node ranges over alphabet [1, q], and symbol rank/select
queries are needed over those sequences. One needs logq σ operations on those
sequences to perform the corresponding operation on the original sequence.

Either for binary or general wavelet trees, it can be shown that the H0 en-
tropies in the representations of the sequences at each level add up to nH0(A)
bits [11,9]. However, as we have O(σ) bit vectors, the sublinear terms sum up
to o(σn). The space occupancy of the sublinear structures can be improved to
o(n log σ) by concatenating all the bit vectors of the same level into a single
sequence, and handling only O(log σ) such sequences2. It is straightforward to
do rank, as well as obtaining symbol ai, without any extra information [9].

2 Note that o(n log σ) is sublinear in the size of A measured in bits.
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If we now represent the concatenated bit vectors of the binary wavelet tree
by the rank structures explained in the previous section, we obtain a structure
requiring nH0(A) + O(n log log n/ logσ n) = nH0(A) + o(n log σ) bits, solving
rank in O(log σ) time. Within the same bounds one can solve select as well
[23,11].

Theorem 1 ([11]). Let L be a string and Bv the corresponding binary sequence
for each node v of the wavelet tree of L. Then

∑
v |Bv|H0(Bv) = |L|H0(L).

One can also use multiary wavelet trees and represent the sequences with al-
phabet size q using the techniques for small alphabets (see the end of previous
section). With a suitable value for q, one obtains a structure requiring the same
nH0(A) + o(n log σ) bits of space, but answering rank and select in constant
time when σ = O(polylog(n)), and O(	log σ/ log log n
) time in general [9].

3.3 Full-Text Self-indexes

Many full-text self-indexes are based on representing the Burrows-Wheeler trans-
form [3] of a text using wavelet trees to support efficient substring searches. We
follow the description given in [16].

The Burrows-Wheeler Transform. The Burrows-Wheeler transform (BWT)
[3] of a text T produces a permutation of T , denoted by T bwt. We assume that T
is terminated by an endmarker “$” ∈ Σ, smaller than other symbols. String T bwt

is the result of the following transformation: (1) Form a conceptual matrix M
whose rows are the cyclic shifts of the string T , call F its first column and L its
last column; (2) sort the rows of M in lexicographic order; (3) the transformed
text is T bwt = L.

The BWT is reversible, that is, given T bwt we can obtain T . Note the following
properties [3]:

a. Given the i-th row of M, its last character L[i] precedes its first character
F [i] in the original text T , that is, T = . . . L[i]F [i] . . ..

b. Let L[i] = c and let ri be the number of occurrences of c in L[1, i]. Let M[j]
be the ri-th row of M starting with c. Then the character corresponding to
L[i] in the first column F is located at F [j] (this is called the LF mapping:
LF (i) = j). This is because the occurrences of character c are sorted both
in F and L using the same criterion: by the text following the occurrences.

The BWT can then be reversed as follows:

1. Compute the array C[1, σ] storing in C[c] the number of occurrences of
characters {$, 1, . . . , c − 1} in the text T . Notice that C[c] + 1 is the position
of the first occurrence of c in F (if any).

2. Define the LF mapping as follows: LF (i) = C[L[i]] + rankL[i](L, i).
3. Reconstruct T backwards as follows: set s = 1 (since M[1] = $t1t2 . . . tn−1)

and, for each i ∈ n − 1, . . . , 1 do T [i] ← L[s] and s ← LF [s]. Finally put the
endmarker T [n] = $.
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The BWT transform by itself does not compress T , it just permutes its char-
acters. However, this permutation is more compressible than the original T .
Actually, it is not hard to compress L to O(nHk +σk+1 log n) bits, for any k ≥ 0
[19]. The idea is as follows (we will reuse it in our new analysis later): Parti-
tion L into minimum number of pieces L1L2 · · · L� such that the symbols inside
each piece Lp = L[ip, jp] have the same k-context. Note that the k-context of
a symbol L[i] is M[i][1, k]. By the definition of k-th order entropy, it follows
that |L1|H0(L1) + |L2|H0(L2) + · · · + |L�|H0(L�) = nHk. That is, if one is able
to compress each piece up to its zero-order entropy, then the end result is k-th
order entropy.

Theorem 2 ([19]). Let L = L1L2 . . . L� be a partition of L, the BWT of T ,
according to contexts of length k in M. Then

∑
1≤i≤� |Lj |H0(Lj) = nHk(T ).

Using, say, arithmetic coding on each piece, one achieves nHk + σk+1 log n bits
encoding of T for a fixed k. The latter term comes from the encoding of the
symbol frequencies in each piece separately. This fact is the base of compression
boosting [7]; they give a linear time algorithm to find, for a given zero order com-
pressor, the optimal partitioning of L such that when each piece is compressed
using the given zero order compressor, the compression result is the best over
all possible partitions. Notice that the partitions fixed by the k-contexts are a
subset of all partitions, and hence the resulting compression can be bounded by
k-th order entropy for any k.

Suffix Arrays. The suffix array A[1, n] of text T is an array of pointers to all
the suffixes of T in lexicographic order. Since T is terminated by the endmarker
“$”, all lexicographic comparisons are well defined. The i-th entry of A points to
text suffix T [A[i], n] = tA[i]tA[i]+1 . . . tn, and it holds T [A[i], n] < T [A[i + 1], n]
in lexicographic order.

Given the suffix array and T , the occurrences of the pattern P = p1p2 . . . pm

can be counted in O(m log n) time. The occurrences form an interval A[sp, ep]
such that suffixes tA[i]tA[i]+1 . . . tn, for all sp ≤ i ≤ ep, contain the pattern P
as a prefix. This interval can be searched for using two binary searches in time
O(m log n). Once the interval is obtained, a locating query is solved simply by
listing all its pointers in constant time each.

We note that the suffix array A is essentially the matrix M of the BWT
(Sect. 3.3), as sorting the cyclic shifts of T is the same as sorting its suffixes
given the endmarker “$”: A[i] = j if and only if the i-th row of M contains the
string tjtj+1 . . . tn−1$t1 . . . tj−1.

Backward Search. The FM-index [6] is a self-index based on the Burrows-
Wheeler transform. It solves counting queries by finding the interval of A that
contains the occurrences of pattern P . The FM-index uses the array C and func-
tion rankc(L, i) of the LF mapping to perform backward search of the pattern.
Fig. 1 shows the counting algorithm. Using the properties of the BWT, it is easy
to see that the algorithm maintains the following invariant [6]: At the i-th phase,
variables sp and ep point, respectively, to the first and last row of M prefixed
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Algorithm. FMCount(P [1, m],L[1, n])
(1) i ← m;
(2) sp ← 1; ep ← n;
(3) while (sp ≤ ep) and (i ≥ 1) do
(4) c ← P [i];
(5) sp ← C[c] + rankc(L, sp − 1)+1;
(6) ep ← C[c] + rankc(L, ep);
(7) i ← i − 1;
(8) if (ep < sp) then return 0 else return ep − sp + 1;

Fig. 1. FM-index algorithm for counting the number of occurrences of P [1, m] in T [1, n]

by P [i, m]. The correctness of the algorithm follows from this observation. Note
that P is processed backwards, from pm to p1.

Note that array C can be explicitly stored in little space, and to implement
rankc(L, i) in little space we can directly use the wavelet tree as explained in
Sect. 3.2. The space usage is nH0 + o(n log σ) bits and the m steps of backward
search take overall O(m log σ) time [16].

4 Implicit Compression Boosting

In Sect. 3.3 we showed that if L is partitioned into � pieces L1L2 · · · L� according
to the k-contexts, then it is enough to achieve zero-order entropy within each
partition to obtain k-th order total entropy. We now prove that the simple so-
lution of Sect. 3.3 supporting backward search requires only nHk bits of space.
We start with an important lemma.

Lemma 1. Let L = L1L2 · · · L� be any partition of L, the BWT of T . The
number of bits used by a partition Lj in the wavelet tree of L is upper bounded
by |Lj |H0(Lj) + O(|Lj | log σ log log n/ log n + σ log n).

Proof. The bits corresponding to Lj form a substring of the bit vectors at each
node of the wavelet tree, as their positions are mapped to the left and right
child using rank0 or rank1, thus order is preserved. Let us consider a particular
node of the wavelet tree and call B its bit sequence. Let us also call Bj the
substring of B corresponding to partition Lj , and assume Bj has lj bits set.
Consider the blocks of b bits that compose B, according to the partitioning of
[23] (Section 3.1). Let Bj

blk = Bj
1B

j
2 . . . Bj

t be the concatenation of those bit
blocks that are fully contained in Bj , so that Bj

blk is a substring of Bj of length
b · t. Assume Bj

i has lji bits set, so that Bj
blk has lj1 + . . . + ljt ≤ lj bits set. The

space the o fields of the (c, o) representations of blocks Bi
j take in the compressed

Bj
blk is

t∑

i=1

⌈

log
(

b

lji

)⌉

≤ log
(

b · t
lj1 + . . . + ljt

)

+ t ≤ log
(

|Bj |
lj

)

+ t ≤ |Bj |H0(Bj)+ t
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where all the inequalities hold by simple combinatorial arguments [21] and have
been reviewed in Section 3.1.

Note that those Bj bit vectors are precisely those that would result if we
built the wavelet tree just for Lj. According to Theorem 1, adding up those
|Bj |H0(Bj) over all the O(σ) wavelet tree nodes gives |Lj |H0(Lj). To this we
must add three space overheads. The first is the extra t bits above, which add
up O(|Lj | log σ/ log n) over the whole wavelet tree because b · t ≤ |Bj | and the
|Bj | lengths add up |Lj| at each wavelet tree level. The second overhead is the
space of the blocks that overlap with Bj and thus were not counted: As Bj is
a substring of B, there can be at most 2 such blocks per wavelet tree node.
At worst they can take O(log n) bits each, adding up O(σ log n) bits over the
whole wavelet tree. The third overhead is that of the c fields, which add up
O(|Lj | log σ log log n/ logn).

The above lemma lets us split the wavelet tree “horizontally” into pieces. Let us
add up all the zero-order entropies for the pieces. If we partition L according to
contexts of length k in M, and add up all the space due to all partitions in the
wavelet tree, we get

∑
1≤j≤� |Lj|H0(Lj) = nHk(T ) (Theorem 2). To this we must

add (i) O(|Lj | log σ/ log n), which sums up to O(n log σ/ log n) = o(n log σ) bits
over all the partitions; (ii) O(σ log n) bits per partition, which gives O(�σ log n);
and (iii) O(|Lj | log σ log log n/ logn), which sums up to O(n log σ log log n/ log n)
= o(n log σ). In the partitioning we have chosen we have � ≤ σk, thus the upper
bound nHk + o(n log σ) + O(σk+1 log n) holds for the total number of bits spent
in the wavelet tree. The next theorem immediately follows.

Theorem 3. The space required by the wavelet tree of L, the BWT of T , if the
bitmaps are compressed using [23], is nHk(T ) + o(n log σ) + O(σk+1 log n) bits
for any k ≥ 0. This is nHk(T )+ o(n log σ) bits for any k ≤ α logσ n− 1 and any
constant 0 < α < 1. Here n is the length of T and σ its alphabet size.

Note that this holds automatically and simultaneously for any k, and we do not
even have to care about k in the index. Fig. 2 illustrates. Our result obviously
applies as well to the BWT alone, without wavelet tree on top, if we use a
suitable local zero-order encoder [9].

5 Discussion

We have shown that the space produced by any splitting of L into pieces is
achieved in the simple arrangement having just one wavelet tree. In [7] they
introduce an algorithm to find the optimal partitioning. We have just used their
analysis to show that it is not necessary to apply such a partitioning algorithm to
achieve the boosted result. Their technique, on the other hand, has more general
applications unrelated to wavelet trees.

Several full-text self-indexes in the literature build on the wavelet tree of the
BWT of the text [16,9], and engage in different additional arrangements to reach
k-th order compression. In [16], they first run-length compress the BWT in order
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bwt(T)

Fig. 2. Illustration of the argument used in the theorem. On top of bwt(T ) = T bwt, the
wavelet trees induced by the optimal partitioning. One of those is highlighted so that
we show the bitmaps stored in the wavelet tree. Below bwt(T ), a single wavelet tree
built for the whole sequence. The bitmaps of this large wavelet tree are also shown,
and they contain the bitmaps of the small highlighted wavelet tree on top.

to reduce its length to O(nHk) and then apply the BWT. In [9] they explicitly
cut the BWT into pieces Lj so that the sum of nH0 sizes of the pieces adds
up nHk. In both cases, the simpler version they build on (just the wavelet tree
of the BWT) would have been sufficient. Thus, we have achieved a significant
simplification in the design of full-text indexes.

Also the paper where the wavelet tree is originally proposed [11] as an internal
tool to design one of the most space-efficient compressed full-text indexes, would
benefit from our simplification. They cut L into a table of lists (columns) and
contexts (rows). All the entries across a row correspond to a contiguous piece
of L, that is, some context Lj . A wavelet tree is built over each table row so
as to ensure, again, that the sum of zero-order entropies over the rows adds up
to global k-th order entropy. Our finding implies that all rows could have been
concatenated into a single wavelet tree and the same space would have been
achieved. This would greatly simplify the original arrangement. Interestingly, in
[12] they find out that, if they use gap encoding over the successive values along
a column, and they then concatenate all the columns, the total space is O(nHk)
without any table partitioning as well. Both results stem from the same fact:
the cell entropies can be added in any order to get nHk.

Finally, it is interesting to point out that, in a recent paper [5], the possibility
of achieving k-th order compression when applying wavelet trees over the BWT is
explored (among many other results), yet they resort to run-length compression
to achieve this. Once more, our finding is that this is not really necessary to
achieve k-th order compression if the levels of the wavelet tree are represented
using the technique of block identifier encoding [22].

6 Application to Space-Efficient Construction of
(Dynamic) Self-indexes

Another consequence of our result is that we obtain an O(n log n logσ) time
construction algorithm for a compressed self-index requiring nHk + o(n log σ)
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bits working space during construction: This is obtained by enhancing our recent
result on dynamic compressed self-indexes:

Theorem 4 ([17]). There is a data structure maintaining a collection
{T1, T2, . . . Tm} of texts in nH0(C) + o(n log σ) bits supporting counting of oc-
currences of a pattern P in O(|P | log n logσ) time, and inserting and deleting a
text T in O(|T | log n logσ) time. After counting, any occurrence can be located
in time O(log2 n log log n). Any substring of length � from any T in the collection
can be displayed in time O(log n(� logσ + log n log log n)). Here n is the length
of the concatenation C = 0 T10 T2 · · · 0 Tm, and we assume σ = o(n).

The dynamic index above uses wavelet tree with the static encoding [23] (see
Sect. 3.1) replaced with a dynamic version of the same encoding: The dynamic
bit vector representation [17] achieves the same nH0 + o(n) space as the static,
but supports rank and select, and in addition insertions and deletions of bits,
in O(log n) time. This can then be used to improve the dynamic index of Chan
et al. [4] to obtain the above result.

Exactly the same analysis as in Sect. 4 applies to this dynamic variant, and
Theorem 4 is boosted into the following.

Corollary 1. There is a data structure maintaining a collection {T1, T2, . . . Tm}
of texts in nHk(C)+o(n log σ) bits, for any k ≤ α logσ n−1 and constant 0 < α <
1, supporting the same operations of Theorem 4 within the same complexities.

Now, just inserting text T into an empty collection, yields the promised space-
efficient construction algorithm for compressed self-index. This index can be
easily converted into a more efficient static self-index, where a static wavelet
tree requires the same space and reduces the O(log n log σ) time complexities to
O(	log σ/ log log n
) [9].

Therefore, we have obtained the first compressed self-index with space essen-
tially equal to the k-th order empirical entropy of the text collection, which in
addition can be built within this working space. Alternative dynamic indexes or
constructions of self-indexes [6,13,2] achieve at best O(nHk) bits of space (with
constants larger than 4), and in many cases worse time complexities.

Note also that, from the dynamic index just built, it is very easy to obtain
the BWT of T . It is a matter of finding the characters of L one by one. This
takes O(n log n logσ) time, just as the construction, and gives an algorithm to
build the BWT of a text within entropy bounds. The best result in terms of
space complexity takes O(n) bits working space, O(n log2 n) time in the worst
case, and O(n log n) time in the expected case [15]. Using O(n log σ) working
space, there is a faster algorithm achieving O(n log log σ) time requirement [13].
Finally, one can achieve the optimal O(n) time with the price of O(n logε n log σ)
bits of space, for some 0 < ε < 1 [20].

7 Final Practical Considerations

Our main finding is that all the sophistications [16,9,11] built over the simple
“wavelet tree on top of the BWT” scheme in order to boost its zero-order to
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high-order compression are unnecessary; the basic arrangement already achieves
high-order entropy if combined with a local zero-order encoder [23].

Still, the sophisticated techniques have practical value. In the actual im-
plementation of such methods (Pizza&Chili site, http://pizzachili.dcc.uchile.cl),
zero-order entropy is achieved by using uncompressed bit streams over a Huffman-
tree shaped wavelet tree, instead of compressed bit streams over a balanced
wavelet tree. In this case the locality property does not hold, and high-order
entropy would not be achieved if just the simple wavelet tree of the BWT was
used.

Huffman-shaped trees were chosen to reach zero-order compression because
of the considerable difficulty in implementing Raman et al.’s scheme [23]. As
both alternatives were believed to yield similar compression ratios, the Huffman-
shaped option seemed to be far more attractive from a practical point of view.

The situation is rather different now that we know that Raman et al.’s scheme
yields high-order by itself, thus avoiding the need of any further complica-
tion to achieve high-order compression such as run-length compression (Run-
Length FM-index, RLFM [16]) or compression boosting plus managing multiple
wavelet trees (Alphabet-Friendly FM-index, AFFM [9]). Those complications
not only make the implementation effort comparable to that of using Raman
et al.’s scheme, but also involve a considerable space overhead for extra struc-
tures.

A prototype combining Raman et al.’s compression with balanced wavelet
trees has already been implemented by Francisco Claude, a student of the sec-
ond author. Unlike the existing implementations, this one offers a space-time
tradeoff, related to the partial sums sampling rate. A preliminary comparison
with the implementations of the SSA (bare Huffman-shaped wavelet tree over
the BWT), RLFM, and AFFM, shows that our technique is 2–3 times slower
for counting when using the same amount of space, which confirms the original
predictions about implementation overheads. In exchange, it can still operate
with reasonable efficiency using less than 75% of the space needed by the al-
ternatives. This makes it a relevant choice when space reduction is the main
concern.

It is interesting that our technique can achieve such a low space even when
it has to pay for space overheads like the c components in the (c, o) pairs. This
opens the door to the study of other alternatives that, even when they do not
surpass the “nHk + o(n log σ) for k ≤ α logσ n” theoretical barrier, do behave
better in practice. We point out that this barrier is not as good as it may seem
when one puts numbers to the condition on k and realizes that the achievable k
values are rather low. Worse than that, it is unlikely that this theoretical limit
can be sensibly improved [10]. Yet, those limits are worst-case, and different
methods may not have to pay the Θ(σk+1 log n) space overhead in practice. For
example, in our case, this overhead comes from the fact that we are unable to
analyze better the compression of blocks that are split among contexts, and thus
we assume the worst about them. On the other hand, the c components are real
space overhead in our scheme (2n bits!), and that perhaps could be improved.
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17. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp.
307–318. Springer, Heidelberg (2006)

18. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. on Computing, 935–948 (1993)

19. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. of the ACM 48(3),
407–430 (2001)

20. Na, J.C.: Linear-time construction of compressed suffix arrays using o(n log n)-bit
working space for large alphabets. In: Apostolico, A., Crochemore, M., Park, K.
(eds.) CPM 2005. LNCS, vol. 3537, pp. 57–67. Springer, Heidelberg (2005)

21. Pagh, R.: Low redundancy in dictionaries with O(1) worst case lookup time. In:
Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 595–604. Springer, Heidelberg (1999)



Implicit Compression Boosting with Applications to Self-indexing 241

22. Raman, R., Raman, V., Srinivasa, S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001)

23. Raman, R., Raman, V., Srinivasa Roa, S.: Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In: Proc. SODA 2002, pp. 233–
242 (2002)



A Web-Page Usage Prediction Scheme Using

Weighted Suffix Trees

Christos Makris, Yannis Panagis, Evangelos Theodoridis,
and Athanasios Tsakalidis

Computer Engineering and Informatics Department, University of Patras,
Rio 26504, Greece

{makri,panagis,theodori,tsak}@ceid.upatras.gr

Abstract. In this paper we consider the problem of web page usage pre-
diction in a web site by modeling users’ navigation history with weighted
suffix trees. This user’s navigation prediction can be exploited either in
an on-line recommendation system in a website or in a web-page cache
system. The method proposed has the advantage that it demands a con-
stant amount of computational effort per user action and consumes a
relatively small amount of extra memory space. These features make
the method ideal for an on-line working environment. Finally, we have
performed an evaluation of the proposed scheme with experiments on
various website logfiles and we have found that its prediction quality is
fairly good, in many cases outperforming existing solutions.

Keywords: World Wide Web, web mining, online web page recommen-
dation, weighted sequences.

1 Introduction

The vast size of the World Wide Web (WWW) nowadays makes it the largest
database ever existed. Back to the beginning of this decade it was estimated
to contain over 350 million pages [3] while recently it has been estimated that
only the indexed part of WWW by a web search engine consists of at least 11.3
billion pages [13]. Every attempt to shape this huge volume of data that follows
a very loose schema is quite difficult and extreme challenging. According to [9]
the application of data mining techniques in order to extract useful information
woven among web data is an essential task. Web data may be either web data
pages or data describing the activity of users. Actual web data consists of web
pages, web page structure, linkage structure between the web pages, surfing
navigational behavior of the users and user profiles including demographic and
registration information about the users [9,29].

Web data mining can be divided into three general categories: web content
mining, web structure mining and finally web usage mining [36]. In this paper
we focus to the last area that tries to exploit the navigational traces of users
in order to extract knowledge about their preferences and their behavior. The
task of modeling and predicting a user’s navigational behavior on a website
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or a web-domain can be useful in a handful of web applications such as web
caching [22,31], web page recommendation [8,4], web search engines [2,24] and
personalization [10]. Refer to [12] for several other applications of web usage
mining.

According to [12] most of the web usage mining techniques are based on
association rules, sequential patterns and clustering. The approaches based on
association rules build a set of rules of the form: {page1.html, page2.html} →
page3.html which means that users having visited page1 and page2, have also
visited page3. Methods that use association rules can be found in [19,20]. Se-
quential patterns maintain navigational patterns as sequences and try to discover
frequent subsequences that describe better the data. Sequences are either used
to produce association rules or to produce tree structures or Markov chains to
represent navigation patterns. Methods proposed in [19,23,22] fall into this gen-
eral category. Lately, in [37,25,14] the authors proposed the use of web access
motifs and string matching techniques. The idea behind the use of these methods
is that string algorithmics seem to adapt quite well to the analysis of hypertext
navigation. Finally, clustering techniques have been used to group similar user
sessions according to a distance function, like longest common subsequence [1]
or sequence alignment [17]. Also more complex methods have been proposed in
[27,35,26] in order to enhance the results of the clustering method.

In this paper we propose an efficient method for modeling user navigation
history. Our method is based upon several ideas from the existing literature
and upon a string processing structure previously used in computational biology
problems; the weighted suffix tree [18]. The provided estimation of user’s navi-
gational intention can be exploited either in an on-line recommendation system
in a website or in a web-page cache system. The method proposed here has the
advantage that it demands a constant amount of computational effort per one
user’s action and consumes a relatively small amount of extra memory. These
features make our method ideal for an on-line working environment. The struc-
ture of the paper is as follows. In section 2 we present some basic definitions and
background information. Section 3 presents the approach proposed by this pa-
per. In section 4 we describe the methodology followed to evaluate our method
and present experimental results, while in section 5 we conclude and discuss
future directions.

2 Definitions and Background

Let Σ be a finite alphabet which consists of a set of characters (or symbols).
The cardinality of an alphabet, denoted by |Σ|, expresses the number of distinct
characters in the alphabet. A string or word is a sequence of zero or more charac-
ters drawn from an alphabet. The set of all words over the alphabet Σ is denoted
by Σ+. A word w of length n is represented by w[1..n] = w[1]w[2] . . . w[n], where
w[i] ∈ Σ for 1 ≤ i ≤ n, and n = |w| is the length of w.

A subword u of length p is said to occur at position i in the word w if u =
w[i..i + p − 1]. In other words u is a substring of length p occurring at position
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i in word w. In the case that for a given position of a word w we consider the
presence of a set of characters each with a given probability of appearance, we
have the concept of a weighted sequence X .

Definition 1. A weighted sequence/word X = X [1]X [2] . . .X [n] is a sequence
of positions, where each position X [i] consists of a set of ordered pairs. Each
pair has the form (σ, π(σ)), where π(σ) is the probability of having the character
σ at position i. For every position X [i], 1 ≤ i ≤ n,

∑
π(σ) = 1.

The suffix tree is a fundamental data structure supporting a wide variety of effi-
cient string processing algorithms. In particular, the suffix tree is well known to
allow efficient and simple solutions to many problems concerning the identifica-
tion and location either of a set of patterns or repeated substrings (contiguous
or not) in a given sequence. The reader can find an extended literature on such
applications in [30].

The weighted suffix tree can be considered as a generalization of the ordinary
suffix tree in order to handle weighted sequences by incorporating the notion of
probability of appearance for every suffix stored in a leaf. The construction of this
structure has been proposed in [33], together with a set of several applications.

Definition 2. Let X be a weighted sequence. For every suffix starting at posi-
tion i we define a list of possible weighted subwords so that the probability of
appearance for each one of them is greater than 1/k. We denote each of them as
Xi,j , where j is the subword rank in arbitrary numbering. We define WST (X)
the weighted suffix tree of a weighted sequence X, as the compressed trie of a
portion of all the weighted subwords starting within each suffix Xi of X$, $ not
in Σ, having a probability of appearance greater than 1/k. Let L(v) denote the
path-label of node v in WST (X), which results by concatenating the edge labels
along the path from the root to v. Leaf v of WST (X) is labeled with index i
if ∃j > 0 such that L(v) = Xi,j [i..n] and π(Xi,j [i . . . n]) ≥ 1/k, where j > 0
denotes the j-th weighted subword starting at position i.

We suppose that the navigation history in a web site is maintained as web access
sequences (WAS). Web access sequences are sequences of web pages that express
each session (clicking sequence) of the users and can be generated by the logfiles
of the web site; if we represent each web page as a symbol in an appropriate
alphabet then the WAS is essentially a string.

3 Prediction/Recommendation Model

In our model we assume that each navigation session is described by a WASi

and stored for offline preprocess. S is the set of all existing web access sequences
that have taken place in the web site. A brief outline of our method follows: In
an offline manner, running either in an idle time period or in the background,
the system processes the set S of the navigation sessions in order to group them
into clusters. Each of the clusters contains sequences very similar to each other.
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Then each of the clusters Ci is represented by a weighted sequence WSi and,
finally, using these sequences a generalized weighted suffix tree gWST( i : WASi)
is constructed. This structure is further maintained and used as a web page
prediction/recommendation tool. Each one of the pre-processing steps is going
to be described in a more detailed way in the following sections.

3.1 WAS Maintenance

Each of the user navigation sessions is implicitly maintained in the logfiles of the
websites server. Either we program properly the web server to store each WAS
in separate repository or we can program an extraction process from the logfiles
that is executed at the beginning of the preprocessing procedure. Each webpage
of the site has been labeled with a unique symbol. All these symbols form the
alphabet of the web access sequences. Assume for the sake of description that
there are N sequences that form a set S = {WAS1, WAS2, . . . , WASN}.

3.2 WAS Clustering

At this step of the preprocessing procedure we construct the similarity matrix of
S. This N ×N matrix expresses the similarity of each pair (i, j) of sequences. As
a metric of the distance/similarity between WASi and WASj we chose to use a
hybrid metric taking into account the global alignment and the local alignment
of the two sequences. More formally:

D(i, j) = (1 − p) ∗ LA(WASi, WASj) + p ∗ GA(WASi, WASj) (1)

where LA(WASi, WASj) is the score of the local alignment of the sequences
WASi and WASj , GA(WASi, WASj) is the score of the global alignment for
these sequences, and p is a parameter that expresses the importance that we
give to the scores of the two different alignments.

In order to define the value of p there are several possibilities. One choice is to
use p equal to 0.5 giving the same influence to both alignments. The second and,
more proper, choice is to define the value of p to be relative to the ratio of the
lengths of the two sequences. More formally, assuming without loss of generality
that |WASj | ≥ |WASi|, we define:

p =
|WASi|
|WASj |

(2)

The intuition behind this definition is that when the two sequences, and thus
navigational behaviors, have almost the same length we should take more into
account the global alignment than the local. When the lengths of the two se-
quences are very different p is close to zero and local alignment has more influence
than the global one. Our claim is that common navigational preferences of the
users that are depicted by the two sequences are not captured only by aligning
the sequences in their full length; smaller but closely aligned subsections of the
sequences can capture common behavior, too.
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The score function for the alignment has to be appropriate in order to express
navigational properties of the sessions. A straightforward approach would assume
that the match of two characters/pages in the alignments should be awarded a
positive constant score, while a mismatch or a match with a space with a negative
constant score. A specific page of a web site may play dissimilar roles to different
users so a simple character/page match in may mean nothing in the task of
similarity testing of two sequences. However, a web page may have no importance
to a user; we call these web pages Unimportant, such as web site start-pages or a
page visited by a wrong click and immediately a back-step is performed. Usually,
a user stays to unimportant pages a very short period of time, a few seconds at
most, and then visits another page. Also a page is unimportant for a user when
it is recorded in logfile for inordinately large period of time, usually above 25-30
minutes. This usually means that the user has changed web page by typing a
new address or by clicking a banner. Another role that can play a page is the
one of index, we call these pages Hub. Users try in these pages to locate the
link to the desired page by reading roughly the content and staying in those
pages not more than 5-6 minutes. Finally, there are the Content pages with the
desired for the user content. Users spend in Content pages approximately 10 to
20 minutes. Consequently, there is need to store in each WAS the corresponding
period of time along with each character/page. Techniques for session extraction
from log files and for extracting additional information can be found in [33,28,6].
As mentioned before, from all the pages we form initially an alphabet Σ from
the web-pages, which is augmented by at most three times by characterizing
each of the pre-existing symbols as Unimportant, Hub and Content.

For calculating the global and the local alignments the classical approach
of dynamic programming [21] has been chosen using recursive formulas for the
alignments of the prefixes WASi and WASj . Both in global and local alignment
of two sequences the alignments of symbols with spaces should not be concen-
trated in consecutive positions. Consecutive alignments with spaces are defined
as gaps. Very long gaps mean that in the one WAS, the user has followed a very
different path (maybe lost) in comparison with the other so we would not like to
favor such gaps. In order to tackle this phenomenon, we apply affine gap penal-
ties in the alignments. The objective is then to find an alignment that maximizes
the quantity:

Wm∗(#matches)−Wms∗(#mismatches)−Wg ∗(#gaps)−Ws∗(#spaces) (3)

where Wm = 1 denotes the weight of a match, Wms = −1 denotes the weight
of a mismatch Wg denotes the weight of starting a new gap and Ws denotes the
weight of an alignment with a space. We would like to favor small gaps so we
have chosen Wg = −1 while Ws=-5. The gap opening penalty is, intentionally,
kept smaller than the gap penalty in order to favor frequent gap openings with
small length instead of longer and more infrequent gaps. The classic recursive
equations can easily adapt to incorporate affine gaps, too [15].
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When similarity matrix D has been constructed we use it in order to group
the sequences into clusters. The distance matrix can be viewed as N points in
N -dimensional space. Running a clustering algorithm upon these N points will
produce clusters consisting of very similar web access sequences. D is given as
an input to the k-windows clustering algorithm [30]; a well known unsupervised
partitional clustering algorithm. Our decision to use k-windows as a clustering
method was followed for a variety of reasons, such as the enhanced quality of
the produced clusters and its inherent parallel nature (more information can be
found in [30]).

One of the drawbacks of the traditional implementation of the k-windows
algorithm is that it uses as an underlying data structure a d-dimensional range
tree [32] which is very inefficient in high-dimensions. In order to overcome this
drawback we propose a variation of k-windows algorithm that utilizes R-trees [16]
as an underlying data structure for algorithm operations. As an alternative to
k-windows, the k-means algorithm can also be used.

3.3 WAS Cluster Representation

When the WAS clustering procedure is over each one of the clusters is expressed
as a weighted sequence. The produced weighted sequences implicitly capture
most of the navigational behavior that is observed in the corresponding cluster.
Assuming that we examine a cluster with f web access sequences, in order to pro-
duce the weighted sequences the web access sequences are combined using their
multiple sequence alignment. Although the calculation of a multiple sequence
alignment is extremely time and space consuming using dynamic programming
approaches, in some cases it may be affordable because the length of the sessions
is usually short (5 to 10 pages is a very frequently observed session length) due
to limited human recall [11] or to bounded web site height [5].

As an alternative, someone could possibly use the approach of progressive or
iterative pairwise alignment in order to produce the multiple sequence alignment
[15]. Progressive of iterative algorithms are based on the idea that the solution
can be computed by modifying an already suboptimal solution. The simplest
approach is to initially align the pair of WAS with the maximum similarity.
Then successively merge in, the WAS with smallest distance from any of the
strings already in the multiple alignment. This method can be viewed as find-
ing the multiple alignments consistent with a maximum spanning tree formed
from similarity data (matrix D). A more realistic variant of the above approach
might choose the sequence with the maximum average similarity in order to in-
corporate it in the multiple sequence alignment aligning that sequence with the
most alike. In our case we have used the Star-alignment heuristic presented in
[15].

Finally, when the multiple sequence alignment of the cluster’s sequences has
been calculated, we construct the weighted sequence that represents the cluster.
At each position and for each character/page we maintain the percentage of their
appearance, without taking the space into account.
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3.4 WST Utilization - Recommendation/Prediction Method

As soon as all weighted sequences have been produced, their corresponding gen-
eralized weighted suffix tree is constructed. For this construction the algorithm
of [18] is used tuned by a parameter 1/k. The computational time and the space
utilized by this structure are linear to the sum of the lengths of all weighted se-
quences. The generalized weighted suffix tree will represent all possible weighted
subwords of all of the weighted sequences such that the probability of appearance
for each one of them is greater than 1/k. The experimental evaluation showed
up that a proper value for parameter 1/k is between 0.01 and 0.1.

The weighted suffix tree can implicitly capture the most important naviga-
tional experience and at a small computational and memory price. It works like
a prediction model without storing explicitly strings and probabilities of occur-
rence. Also inherits all the virtues of suffix trees (which is a well studied data
structure): the linear space, the linear construction time and many well designed
practical implementations.

The recommendation/prediction algorithm works as follows: when a new user
arrives to the system, he is assigned to the root of the generalized weighted
suffix tree (gWST). As the user navigates through the web site selecting web
pages by clicking links, his position in the gWST is advanced, too. Assume that
he currently is at an internal node u and he is ready to perform his next step.
The system proposes to him the web pages indicated by the outgoing edges
of u. Each of the outgoing edges is labeled by a substring and starts with a
different character. All those different characters/web pages are proposed to the
user. The proposition of all descendants is not realistic since the cardinality
of them can grow more than 100 (we refer to this approach as unbounded in
the evaluation section just for the sake of comparisons). If the number of the
proposed web pages is relatively large, above 20, a selection of at most 20 web-
pages is presented (or prefetched) to the user. Those pages are either randomly
selected (bounded-random) or we pick the ”heaviest” ones(bounded-weight). The
weight of each one of the choices is defined as the number of times that this node
has been visited by a user before and it is implemented by a simple counter and
a priority queue upon each node.

In the extreme case that under an internal node there is no edge starting with
the character that corresponds to the user’s choice, then the user is assigned to
the root again and the tree navigation starts again according to the following
actions of the user.

4 Evaluation

For the evaluation of the proposed system various experiments have been per-
formed. Through this process we would like to study and estimate: the demands
in memory of the proposed system, the preprocessing effort to construct the
structure and the success of the prediction/recommendation that the system
creates.
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We have performed several experiments, choosing different values for the pa-
rameters of the system in each one. All experiments have been performed on a
AMD64 dual core@ 2Ghz with 1 Gbyte of main memory under Windows XP.
The programs were coded in Perl and C. The experiments simulate the user be-
havior by using a web-server log file. The 3-10% of the information of the logfile
has been used in order to construct the data structure (gWST) of the system
while the rest has been used to evaluate the recommendations.

For the purposes of this experiment we have utilized the web server’s logfile
of our department.1 This logfile corresponds to a two month period and has
approximately 260 Mbytes size. We have also used for this set of experiments
the well-known data sets in many studies in this area; the log file of NASA
web server over the months of July and August 1995 2. For extracting the web
access sequences from the logfiles we have extended the Follow web-log analysis
tool [38], in order to have the properties described in section 3.2. The initial
tool and the extension were both written in Perl. With the preprocessing of the
logfiles a set of web access sequences has been produced. A percentage of these
(3-10%), randomly selected, has been utilized for capturing the user behavior of
the website by clustering them and constructing the weighted suffix tree while
the rest has been used as an evaluation set. For each WAS, we perform the
movements of the user described by the sequence and the system behavior as
described in section 3.4. In order to evaluate the performance of our method we
have used two known metrics as in [26,7]:

– Hit-Ratio: For each WAS we maintain an evaluation score. For each character
of the sequence/step of the user in the site we increase the score by one if
the next step (page of the web site) has been proposed by the system while
in the case that the user performs a step not in the set recommended by the
WST (section 3.4) we keep the score unchanged. Finally for each WAS, we
calculate a weighted score defined by the ratio of the previous score over the
length of the sequence (which is the best score).

– Click-Soon-Ratio: For each WAS we maintain an evaluation score. For each
character of the sequence/step of the user in the site we increase the score
by one if at least one of the recommendations/predictions is requested by
the user until the end of the sequence (thus while the user session is active).
If none of the recommendations is used while the session is active we keep
the score unchanged. Finally for each WAS, we calculate a weighted score
defined by the ratio of the previous score over the length of the sequence
(which is the best score too).

Figure 1. recapitulates the settings and the results of the experiments on the
NASA logfile. A small amount (2%) of the data set has been used to train our
model in both experiments. In the first one, the 1/k building parameter of the
weighted suffix tree is fine-tuned while in the second one the number of initial
clusters is varied. At a first glance we observe that the weighted scheme for
1 http://www.ceid.upatras.gr
2 http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
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Fig. 1. Experiments on NASA logfile

the selection of the recommendations, in both metrics, is always much better
from the random selection but slightly worse from the impractical unbounded
proposing. Decreasing 1/k implies increasing the effectiveness of the model in
both metrics but with larger memory usage. Suitable selection for 1/k seems to
be values below 0.1. The number of utilized clusters seems to affect the capability
of the model leading to less memory consuption but in a more indirect way than
the 1/k parameter. Finally, in the third experiment we have varied the size of
the training data set from 2% to 10%. It seems that with larger training sets and
small values of 1/k the model can achieve even more better prediction with the
weighted scheme in both metrics. (84.12% and 97.29% resp.). With such high
hit-ratio scores this model is capable to perform as an online recommendation
system and with those click-soon ratio scores as a prefetching web-page system.
Comparing our experimental results with those of [14], which is one of the latest
techniques competitive to ours and the latest comparison work in the topic, we
can claim that our method outperforms most of them. More specifically:

– our model seems to have similar performance and sometimes slightly better
in the click-soon metric (the best scores in [14] vary from 85 − 94%)

– in hit-ratio metrics our method is achieving clearly better performance (the
best scores in [14] vary from 50 − 60%)

in both cases by utilizing a much smaller training set which indicates that our
model has a stronger predictive capability.

The results of experiments on the other data set, the logfile of www.ceid.
upatras.gr, are quite similar to the above ones and slightly better again using
the same portion of information for training purposes. This comes from the
fact that this website is a smaller one with much less navigational patterns
that are captured better by our model. This data set consists of 27805 web
access sequences while from NASA logfile they have been produced over 55000
sequences. Due to lack of space the data table of these results is not presented.

Concerning, memory utilization, the consumption of memory of the main
data structure is quite reasonable and does not exceed the size of few MBytes
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Fig. 2. Data structure space. Overall preprocessing time, data structure construction
time.

while the preprocessing procedure is more demanding due to the computation
of distance matrix D, whose size is quadratic to the size of the training set (see
fig 2).

5 Conclusions and Open Issues

In this paper we have proposed a technique for predicting web page usage pat-
terns by modeling users’ navigation history using string processing techniques,
and we have validated experimentally the superiority of our proposed technique.
Future work includes different ways of modeling web user access patterns, choice
of different clustering techniques, investigation of different metrics, exhaustive
experimental comparisons with similar techniques and exploitation of the trade-
off between the degree of the weighted suffix tree (is directly affected from the
threshold), and the performance of our scheme.
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Abstract. Many authors believe that in order to achieve coherence and
flexibility at the same time in multimedia-based learning units, it is
highly recommendable to structure the different components as a graph.
In a lesson graph, educational resources are encapsulated into learning
objects (LO) along with their respective metadata and are interconnected
through different kind of rhetorical and semantical relationships. The
LOs of these graphs are stored within repositories, where their metadata
are used to ease their retrieval. In this paper we propose to integrate
the processes of searching LOs and editing the lesson graph. This new
framework extends traditional keyword and metadata search to take ad-
vantage of the information stored implicitly in the lesson graph structure,
making LOs retrieval more effective and the expression of queries more
intuitive. The retrieval of the learning material consists of two processes:
(1) The user first defines the topological location of a required piece of
educational material within the lesson graph, this is, its relationships
with other pieces. (2) Then, the user issues a traditional keyword query,
which is processed by an IR system modified to take the graph structure
into account. Experiments show the advantages of this approach.

1 Introduction

The last ten years have witnessed the emergence of various repositories dedicated
to store and share educational resources under the form of learning objects,
or LO in short. Although LOs have different definitions in the literature, this
article considers a LO as a piece of educational material (a slide, a web page,
a simulation, etc.) associated with some metadata. The main goal of LOs is to
enable the re-usability of learning/teaching material. International organizations
have worked towards supporting that purpose by defining characterization and
interoperability standards for LOs [1].

One of the main ongoing efforts in this direction is the specification of the
Learning Object Metadata (LOM) standard for the metadata characterizing a
LO [2]. Unlike most standards that mainly describe physical attributes of the
digital resources, LOM offers a large set of educational attributes designed to
help teachers and learners to retrieve existing educational material and activities.

In practice, however, most users issue simple keyword queries and neglect the
use of the metadata in spite of the difficulties they face while retrieving the
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material they expect to obtain [3]. In this paper, we present a user-oriented way
of taking advantage of the metadata: The user tells the system the location in
the lesson graph where to find the LO he needs and what type of relations this
object should hold with its neighbors. We then make use of this information to
improve retrieval.

The graph representation is an intuitive way of visualizing the course struc-
ture and is amenable to last minute modifications during the lecture delivery
itself. Many course authoring tools designed to create adaptive and flexible les-
son units use a graph for the course structure [4]. Typically, a teacher starts the
authoring of a course by building a graph of LOs connected by semantic and/or
rhetoric relationships and fills the nodes with teaching material. The new search
paradigm for learning material we propose comes into play naturally when the
teacher introduces a new, empty node, i.e., not yet referring concrete material,
into the graph and links it to other nodes. These nodes, the links and the associ-
ated metadata provide a context to the search that we use to improve retrieval.
The main challenge we face is the transformation of the information contained
implicitly in the graph into a form that can be used to search the LO database.

The following section introduces the notion of lesson graph based on LOs.
Next querying a LO repository from within a lesson graph is presented. Section 4
describes our method for taking advantage of the lesson graph associated with
the query in order to enhance LO retrieval. The results of experiments in a small-
scale but realistic setting are reported and support our approach: We show in
the experiment section how our method improves over simple keyword queries.
Finally, related work is reviewed and conclusions are obtained.

2 Authoring a Course as a Graph

Metadata for Learning Objects (LOM) has two purposes, to describe the LOs
and to interconnect LOs. The LOM specification concerns about 60 metadata
attributes describing mostly technical, educational and general aspects of edu-
cational resources. Attributes are identified by a series of names separated by
slashes, e.g., general/title, where “general” is the category and “title” the at-
tribute name. Attributes can be classified in three sets: (1) Predefined vocabulary
values (e.g., easy and difficult are vocabulary values for the educational/difficulty
attribute). The specification proposes values for the vocabulary but this is gen-
erally tailored towards the needs of particular teaching communities. (2) Free
text that can be associated with a given language. Several texts corresponding
to several languages can be proposed. (3) Primitive types, such as identifier,
date, time, or integer. Most attributes have a value defined on a set, e.g., a set
of strings for the general/keywords attribute.

Links between LOs are defined by a special kind of attribute called a relation.
Links are typed, such as introducesTo or exemplifiedBy. The set of links defines
the structure of the graph. Figure 1 illustrates such a LO graph where six LOs,
labeled from L1 to L6, describe a part of a programming course for an object
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Fig. 1. Start of a lesson graph about “object instantiation”

oriented language. L1 (problem definition) and L2 (Java code) introduce the
problem of how to organize a crossroad with two traffic lights. The topic of this
exercise is object instantiation in a program. L3 and L4 refer to slides defining
respectively object instantiation and the concept of constructors. L5 is an ex-
ample of a query within a LO graph and will be described in the next section.
L6 is a LO of coarser granularity and acts as a container for L1 to L5. Practi-
cally, lesson graphs such as the one presented in Figure 1 can be authored with
LessonMapper2, a graph authoring tool of LOs characterized with LOM [5].

Several authors argue that the LOM relation types specification is insufficient
for lesson authoring and needs to be extended [6,7]. We focus on the work of
Trigg [8], which defines an extensive set of relations for supporting narration.
According to our institution teachers’ needs, we empirically selected a subset
of these relations, emphasizing the semantical, rhetorical and organizational as-
pects of course authoring: introducesTo, assessedBy, supportedBy, abstractedBy,
exemplifiedBy, comparableWith, backgroundFor, summarizedBy, explainedBy, re-
solvedBy, refutedBy, isPartOf. Each of these relations has an opposite: a relation
from a LO a to another LO b implies an inverse relation from b to a. It is impor-
tant to note that the suggested relations do not apply to all teaching contexts,
but are easily complemented to suit other situations.

3 Querying a Repository from Inside the Lesson Graph

Standard querying is done by searching matching metadata and keywords. To
describe L5, we could for example choose “constructors overloading” and retrieve
the LOs with metadata related to it. This is the approach taken by the Lucene
search engine [9] that we use in our experiments (Section 5).

Querying a LO repository can be done using a purely graphical approach.
For instance, consider node L5 of Figure 1. This node is not associated with an
existing document, instead it is a query node: A query reflecting the need for a
learning object with certain characteristics is thus expressed as a position in the
lesson graph. In Figure 1, the LOs satisfying the query node L5 are examples of
the concepts introduced by L4.
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Since authoring a lesson consists of adding nodes to the lesson graph, it is
natural to integrate this task with retrieval and to use the implicit information
associated with the new node position. This can be seen as associating a context
extracted from the graph to the traditional term or metadata search. In this
work, we will modify the ranking of retrieved objects as produced by a Lucene
search process with the results of classifiers designed to take the neighbor graph
into account.

4 Using the Lesson Graph to Evaluate Potential Results

Motelet et al. [10] propose a system that takes advantage of the semantics of a
lesson graph in order to infer information about the LOM semantics of the LOs
of a lesson graph. Unlike other models (e.g., [11]), this system suggests metadata
where they are missing using an exhaustive-diffusion process of the node charac-
teristics along the graph edges. This characteristic is particularly interesting in
the context of the lesson graph authoring process where metadata are typically
incomplete. Two types of metadata information are generated: value suggestions
and value restrictions. We propose to generate this additional information for
the query nodes and to use it when querying a LO repository from within a
lesson graph.

This section first describes the use of value restrictions and value suggestions
as classifiers. Then the combination of the generated classifiers with a machine
learning algorithm is discussed.

4.1 Using Value Restrictions as Classifiers

Value restrictions are deduced from graph consistency analysis. In Figure 1 for
instance, we expect L1 to be simpler than L2 because it introduces it. While
the difficulty of a LO is a relative notion that may be hard to standardize, it is
possible to compare difficulty levels of two LOs inside the same lesson graph. In
terms of value restrictions, it means that the value of the LOM attribute edu-
cational/difficulty of L1 should be as low or lower than the educational/difficulty
of L3. If L1 introduces more than one resource, its level of educational/difficulty
should be compatible with each element it introduces. Rules about graph con-
sistency may be defined for any LOM attribute and any relation as far as it is
meaningful. In [10], the authors propose that such an assumption about graph
consistency be tailored to suit other teacher requirements if necessary.

When searching a repository, the LOs that comply with the value restric-
tions associated with the query should be promoted. To implement this idea, a
score is computed for each LO as #CompliedRestrictions

#Restrictions . If there are no generated
restrictions for a certain LOM attribute, the scores are set to 1.

4.2 Using Value Suggestions as Classifiers

Value suggestions are generated based on a set of assumptions about attribute
similarities between related LOs. In our example, since L1 introduces L3 we
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expect that both share a similar value for the attribute general/keyword. We
evaluate this similarity based on probabilities observed in the repository over
the same attributes. For instance, analyzing the repository on which we con-
ducted the experiments of Section 5, we observe that a keyword of the attribute
general/keyword of a LO has 54% chance to appear in the same attribute field of
the LOs it introduces.

Formally, if we define Vatt as the set of possible values for an attribute att, a
value suggestion for a LOM attribute of a given LO is a set of weighted values
{(v, w(v)) : v ∈ Vatt} where w(v) is the probability that the v value suits the
LO. We can compute suggestions for elements in the repository in the same way
as we compute them for queries based on the neighboring nodes. To estimate
the similarity between a query node q and a node e from the repository, we need
to measure how similar the nodes’ suggestions are. We propose to adapt the
traditional cosine measure for this task:

simatt(q, e) =
∑

v wq(v) × we(v)
√∑

v wq(v)2 ×
√∑

v we(v)2

where v scans the values of att and wq(v) and we(v) are the weights associated
with v in the suggestions of q and e, respectively. This measure quantifies the
intuition that the value suggestions represent the relation of the node q and
e with their neighbors in their respective graphs. In other words, these values
summarize the context of the nodes.

Note that the original attribute values from node e are discarded and only the
suggestions extracted from its neighbors are considered for evaluating the cosine
measure. There are two reasons for this. First, because we are attempting to
match the lesson graph and the repository graph, it is natural to simulate what
would be the state of e if it were the currently introduced node. Setting e as a new
node in its environment with the same kind of information as the teacher provides
for q has the effect of making the two associated LOs representations more
homogeneous, and improves retrieval as shown by our numerical experiments.
The second reason for discarding the original attribute values of the node e
is more pragmatic and is related to the keyword search: Lucene indexes the
LOs in the repository according to the original attributes and thus there is an
information redundancy if we re-introduce these values in the classifiers. Instead,
using only the value suggestions originating from the node neighbors, the context
is better taken into account. To distinguish the case where we discard the original
attribute values from the case where they are preserved, we refer to the first as
context-only diffusion and the second as full diffusion. Section 5.2 shows
the benefit of context-only diffusion over full diffusion.

4.3 Combining Classifiers

As explained above, graph consistency and context similarity can be used to
evaluate the relevance of repository LOs for each metadata attribute. In our
implementation, we suppose the attributes are independent and have a total of
17 classifiers based on value restrictions and 17 classifiers based on the value
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suggestions. These classifiers are called graph-based classifiers. Combination
of these classifiers is done by RankBoost [12].

RankBoost is a machine learning algorithm that searches for an optimal com-
bination of several weak or uncertain classifiers. In preliminary experiments not
reported in this paper, we first evaluated separately each graph-based classifier.
As the Lucene and graph-based classifiers operate on almost distinct variable
sets, we opted for a series of new classifiers whose score is the score of one graph-
based classifier multiplied by the Lucene score. We call them mixed classifiers.
Each of these classifiers orders repository LOs: The corresponding ranks are the
input to the RankBoost algorithm.

Thanks to the fact that the relevance can be considered binary, we used the
simplest version of the RankBoost algorithm: At each iteration of the algorithm,
a base classifier is chosen, along with a threshold rank and a weight α. The result
of learning is a set of step functions fi, one for each base classifier. The final score
of a LO L for a query q is given by

∑
i fi(ri(q, L)) where ri(q, L) is the rank of

L according to the ith classifier and fi is the function learned by RankBoost for
this classifier. We furthermore required that each function fi is decreasing with
respect to the rank ri, in order to avoid over-fitting (as suggested in [12]).

5 Experiments

5.1 Description

A learning object repository was implemented within our institution and pop-
ulated with 170 learning objects about a single topic: An introductory Java
course. This repository contains fine grained LOs, each corresponding to teach-
ing/learning material for about 5 minutes. In contrast with the available reposi-
tories, relation semantics linking repository LOs are based on the proposal made
in Section 2 (see [13] for getting access to a repository snapshot). Eleven teachers
of Java Programming, not involved in the project presented in this article, were
asked to complete a lesson graph about object instantiation and method call. We
informed them that the lesson should tackle the following topics: constructor,
new, method call, ’.’ , constructors with arguments, method overloading, delega-
tion, object design, separation of concern. They were also informed that topic
ordering was flexible. Topics were purposely defined for various granularities and
without apparent coherency so that each teacher felt free to create a new course.

The lesson was presented as a graph built in LessonMapper2. The tool was
previously introduced to the teachers, along with examples of lesson graphs and
available relation types. Each teacher was confronted with 4 different situations:
(1) A graph with one LO, (2) a graph with 5 LOs (including the first graph), (3)
a graph with 9 LOs (including the second), and (4) a graph with 13 resources
(including the third). The content of the presented graphs were not previously
known to teachers: The presented LOs were original and not similar to the teach-
ers’ own courses. The repository did not contain any LOs used in the presented
graphs.
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The proposed graphs were purposely incomplete in order to motivate the
teacher to complete them. For each situation, teachers were asked to complete
the corresponding lesson graph with 2 new LOs of their choice. The teachers had
to thoroughly describe the required LOs so that the interviewer could identify
which repository LO matched the teacher’s intent. The matching LOs were not
communicated to the teachers. Instead of that, they were asked to search for
them in the repository using common keyword queries and locating the ex-
pected material inside the graphs, i.e., by defining query nodes. Teachers knew
that keyword queries were used to search the metadata of the available LOs of
the repository and not their content. Eventually, query terms referring to some
special vocabulary values were defined in natural language and then replaced by
the interviewer with the proper vocabulary value.

The four situations gave rise to respectively 23, 21, 22 and 22 test cases,
including keyword query and position in lesson graph along with the relevant
results (see [13] for getting access to the test cases). In the first situation, one
teacher formulated 3 queries instead of two. In the second situation, one query
had no answer in the repository and was subsequently ignored.

5.2 Result Analysis

Using the queries (composed of a graph with a query node and of a set of key-
words), we evaluated three different systems: First, we used only keywords and
the Lucene IR system. Lucene indexed the metadata of the LOs contained in
the repository. During the preprocessing, metadata values were stemmed and
tags were removed. Only metadata were indexed since most of the educational
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Fig. 2. Precision recall results of mixed classifiers combined with RankBoost and
Lucene. We also plotted the average precision of the mixed classifiers for both full
and context-only diffusions.
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resources of the used repository were multimedia documents with proprietary for-
mat where relevant information is difficult to access. Similarly, keyword queries
are stemmed.

In the next step, we used the mixed classifiers combined with RankBoost and
each of the two diffusion mechanisms in turn (full diffusion and context-only
diffusion) described in Section 4. We trained and tested RankBoost using a 4-
fold cross-validation. Each fold corresponded to one of the different situations of
the experiment. When testing one fold, the data of the three others were used
for training.

Figure 2 shows the standard precision-recall [14] curves for the data of the
experience described above. Lucene outperforms the mean of the mixed classi-
fiers taken individually. Nevertheless, the RankBoost combination of the mixed
classifiers outperforms significantly Lucene alone, especially when graph-based
classifiers use the context-only diffusion algorithm. Table 1 summarizes tests
confirming the statistical significance of this difference.

Table 1. T-tests on precision differences between RankBoost (context-only diffusion)
and Lucene

Recall interval Mean 95% confidence interval p-value

0% – 25% 0.05226301 0.01948787 – 0.08503815 0.002109

0% – 50% 0.05020075 0.02076609 – 0.07963540 0.001053

0% – 75% 0.04613934 0.01865014 – 0.07362853 0.001251

0% – 100% 0.04106811 0.01429855 – 0.06783768 0.003039

To gain insight on these results, we studied the mean proportional differences
between the RankBoost-based evaluation and Lucene alone using 100 samples
taken randomly with repetition into the 88 test cases (Bootstrap sampling).
The Rankboost combination of the mixed classifiers using context-only diffusion
presents a constantly positive gain of over 10% over Lucene alone.

Analyzing the way the various classifiers are combined, it is possible to iden-
tify which LOM attributes contribute to enhance retrieval: We observe that
the interactivityLevel, interactivityType and semanticDensity classi-
fiers have been singled out by Rankboost as operating on the most helpful
attributes.

We could not experiment with other publicly available repositories because
they lack semantically rich relations between LOs. Therefore, future work will
consist in developing a bigger and more heterogeneous repository in order to
prove that our approach is scalable.

6 Discussion

This paper described how a graph structure can be used as an additional source
of evidence when searching in LO repositories during lesson authoring. We show
that a query can be defined topologically, i.e., according to the location of the
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node within the lesson graph and semantically by a set of keywords. The keyword
search is processed by a standard IR system (in our case Lucene) while the
topological information is used to compare the graph surrounding the query
node with the surrounding graphs of each LO in the repository. Information
from both sources is then combined in order to enhance the retrieval of LOs
to be reused by lesson authors. The idea of defining a query as a graph is also
present in approaches related to concept maps [15,16] but those works ignore the
semantics of the links between concept nodes and characteristics other than node
titles. Experiments show that our system makes successful use of this information
even though we focused on a reduced teacher community and a repository about
a very specific topic.

Most existing works attempting to enhance LO retrieval are based on user
profiles [17,18]. In contrast, our approach requires the teacher to author her
lesson as a graph of LOs but does not need any personal or historical data.
Nevertheless, generating a lesson as a graph imposes on the teacher the tedious
task of generating the metadata [19]. Consequently, various research efforts focus
on automatic and semi-automatic generation of such metadata ([20,21,22]). Such
support systems are necessary to make the authoring of a lesson as a graph of
LOs a reasonable requirement in the context of a teacher community trying to
systematically share teaching/learning material among its members.

The difficult use of metadata makes the extension of a query with contex-
tual information extracted from the graph –like we propose in this work– a
promising approach. It integrates nicely and intuitively into the lesson author-
ing process. One can even argue that the necessity of locating the LOs being
edited or searched helps the teacher to clarify her aims. Our interaction with the
teachers that participated in the experiments tends to confirm this hypothesis.
Moreover, while for now metadata are exclusively used when the LO is retrieved,
our approach directly takes advantage of them when they are created because
they help retrieval, generating a positive insentive for lesson authors to produce
high quality metadata.
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Abstract. A compressed full-text self-index for a text T is a data struc-
ture requiring reduced space and able of searching for patterns P in T .
Furthermore, the structure can reproduce any substring of T , thus it
actually replaces T . Despite the explosion of interest on self-indexes in
recent years, there has not been much progress on search functionali-
ties beyond the basic exact search. In this paper we focus on indexed
approximate string matching (ASM), which is of great interest, say, in
computational biology applications. We present an ASM algorithm that
works on top of a Lempel-Ziv self-index. We consider the so-called hybrid
indexes, which are the best in practice for this problem. We show that a
Lempel-Ziv index can be seen as an extension of the classical q-samples
index. We give new insights on this type of index, which can be of in-
dependent interest, and then apply them to the Lempel-Ziv index. We
show experimentally that our algorithm has a competitive performance
and provides a useful space-time tradeoff compared to classical indexes.

1 Introduction and Related Work

Approximate string matching (ASM) is an important problem that arises in
applications related to text searching, pattern recognition, signal processing, and
computational biology, to name a few. It consists in locating all the occurrences
of a given pattern string P [0, m − 1] in a larger text string T [0, u − 1], letting
the occurrences be at distance ed() at most k from P . In this paper we focus
on edit distance, that is, the minimum number of character insertions, deletions,
and substitutions of single characters to convert one string into the other.

The classical sequential search solution runs in O(um) worst-case time (see [1]).
An optimal average-case algorithm requires time O(u(k+logσ m)/m) [2,3], where
σ is the size of the alphabet Σ. Those good average-case algorithms are called
filtration algorithms: they traverse the text fast while checking for a simple nec-
essary condition, and only when this holds they verify the text area using a
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classical ASM algorithm. For long texts, however, sequential searching might be
impractical because it must scan all the text. To avoid this we use an index [4].

There exist indexes specifically devoted to ASM, e.g. [5,6,7,8], but these are
oriented to worst-case performance. There seems to exist an unbreakable space-
time barrier with indexed ASM: Either one obtains exponential times (on m
or k), or one obtains exponential index space (e.g. O(u logk u)). Another trend
is to reuse an index designed for exact searching, all of which are linear-space,
and try to do ASM over it. Indexes such as suffix trees [9], suffix arrays [10],
or based on so-called q-grams or q-samples, have been used. There exist several
algorithms, based on suffix trees or arrays, which focus on worst-case perfor-
mance [11,12,13]. Given the mentioned time-space barrier, they achieve a search
time independent of u but exponential on m or k. Essentially, they simulate the
sequential search over all the possible text suffixes, taking advantage of the fact
that similar substrings are factored out in suffix trees or arrays.

Indexes based on q-grams (indexing all text substrings of length q) or q-
samples (indexing non-overlapping text substrings of length q) are appealing
because they require less space than suffix trees or arrays. The algorithms on
those indexes do not offer worst-case guarantees, but perform well on average
when the error level α = k/m is low enough, say O(1/ logσ u). Those indexes
basically simulate an on-line filtration algorithm, such that the “necessary con-
dition” checked involves exact matching of pattern substrings, and as such can
be verified with any exact-searching index. Such filtration indexes, e.g. [14,15],
cease to be useful for moderate k values, which are still of interest in applications.

The most successful approach, in practice, is in between the two techniques
described above, and is called “hybrid” indexing. The index determines the text
positions to verify using an approximate-matching condition instead of an exact
one. This requires a search of the first kind (whose time is exponential on the
length of the string or the number of errors). Yet, these searches are done over
short strings and allowing few errors, so that the exponential cost is controlled.
Indexes of this kind offer average-case guarantees of the form O(mnλ) for some
0 < λ < 1, and work well for higher error levels. They have been implemented
over q-gram indexes [16], suffix arrays [17], and q-sample indexes [18].

Yet, many of those linear-space indexes are very large anyway. For example,
suffix arrays require 4 times the text size and suffix trees require at the very least
10 times [19]. In recent years a new and extremely successful class of indexes
has emerged. Compressed full-text indexes use data compression techniques to
produce less space-demanding data structures [20,21,22,23,24]. It turns out that
data compression algorithms exploit the internal structure of a string much in the
same way indexes do, and therefore it is possible to build a compressed index that
takes space proportional to that of the compressed text, gives indexed searching,
and replaces the text as it can reproduce any text substring (in which case they
are called self-indexes). The size of those indexes is measured in terms of the
empirical text entropy, Hk [25], which gives a lower bound on the number of bits
per symbol achievable by a k-th order compressor. In this work we are interested
in indexes based on Lempel-Ziv compression [21,22,26,27,28].
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Despite the great success of self-indexes, they have been mainly used for exact
searching. Only very recently some indexes taking O(u) or O(u

√
log u) bits have

appeared [29,30,7]. Yet, those are again of the worst-case type, and thus all
their times are exponential on k. In this paper we present a practical algorithm
that runs on a compressed self-index and belongs to the most successful class of
hybrid algorithms.

2 Our Contribution in Context

One can easily use any compressed self-index to implement a filtration ASM
method that relies on looking for exact occurrences of pattern substrings, as this
is what all self-indexes provide. Indeed, this has been already attempted [31]
using the FM-index [21] and a Lempel-Ziv index [22]. The Lempel-Ziv index
worked better because it is faster to extract the text to verify (recall that in self-
indexes the text is not directly available). The specific structure of the Lempel-
Ziv index used allowed several interesting optimizations (such as factoring out
the work of several text extractions) that we will not discuss further here.

Lempel-Ziv indexes split the text into a sequence of so-called phrases of vary-
ing length. They are efficient to find the (exact) occurrences that lie within
phrases, but those that span two or more phrases are costlier.

Our goal in this paper is to provide efficient approximate searching over a
small and practical self-index. Based on the described previous experiences, (1)
we want an algorithm of the hybrid type, which implies that the self-index should
do approximate search for pattern pieces; (2) we want a Lempel-Ziv-based index,
so that the extraction of text to verify is fast; (3) we wish to avoid the problems
derived from pieces spanning several Lempel-Ziv phrases. We will focus on an
index [28] whose suffix-tree-like structure is useful for this approximate searching.

Mimicking q-sample indexes is particularly useful for our goals. Consider that
the text is partitioned into contiguous q-samples. Any occurrence O of P is of
length at least m − k. Wherever an occurrence lies, it must contain at least
j = �(m − k − q + 1)/q� complete q-samples. The following lemma, simplified
from [4], gives the connection to use approximate searching for pattern substrings
with a q-samples index [18].

Lemma 1. Let A and B be strings such that ed(A, B) ≤ k. Let A = A1A2 . . . Aj,
for strings Ai and for any j ≥ 1. Then there is a substring B′ of B and an i
such that ed(B′, Ai) ≤ �k/j�.
Therefore, if we assume that B = P and A is contained in O, we index all
the different text q-samples into, say, a trie data structure. Then the trie is
traversed to find q-samples that match within P with at most �k/j� errors. All
the contexts around all occurrences of the matching q-samples are examined for
full occurrences of P . Note in passing that we could also take A = P and B
contained in O, in which case we choose how to partition P but we must be able
to find any text substring with the index (exactly [15] or approximately [16,17],
depending on j). Thus we must use a suffix tree or array [17], or even a q-gram
index if we never use pieces of P longer than q [15,16].
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A Lempel-Ziv parsing can be regarded as an irregular sampling of the text, and
therefore our goal in principle is to adapt the techniques of [18] to an irregular
parsing (thus we must stick to the interpretation B = P ). As desired, we would
not need to consider occurrences spanning more than one phrase. Moreover, the
trie of phrases stored by all Lempel-Ziv self-indexes is the exact analogous of the
trie of q-samples, thus we could search without requiring further structures.

The irregular parsing poses several challenges. There is no way to ensure
that there will be a minimum number j of phrases contained in an occurrence.
Occurrences could even be fully contained in a phrase!

We develop several tools to face those challenges. (1) We give a new variant of
Lemma 1 that distributes the errors in a convenient way when the samples are
of varying length. (2) We introduce a new filtration technique where the samples
that overlap the occurrence (not only those contained in the occurrence) can be
considered. This is of interest even for classical q-sample indexes. (3) We search
for q-samples within long phrases to detect occurrences even if they are within
a phrase. This technique also includes novel insights.

We implement our scheme and compare it with the best technique in practice
over classical indexes [17], and with the previous developments over compressed
self-indexes [31]. The experiments show that our technique provides a relevant
space-time tradeoff for indexed ASM.

3 An Improved q-Samples Index

In this section we extend classical q-sample indexes by allowing samples to over-
lap the pattern occurrences. This is of interest by itself, and will be used for
an irregular sampling index later. Remind that a q-samples index stores the
locations, in T , of all the substrings T [qi..qi + q − 1].

3.1 Varying the Error Distribution

We will need to consider parts of samples in the sequel, as well as samples of
different lengths. Lemma 1 gives the same number of errors to all the samples,
which is disadvantageous when pieces are of different lengths. The next lemma
generalizes Lemma 1 to allow different numbers of errors in each piece (all proofs
are in the Appendix for lack of space).

Lemma 2. Let A and B be strings, let A = A1A2 . . . Aj, for strings Ai and
some j ≥ 1. Let ki ∈ R such that

∑j
i=1 ki > ed(A, B). Then there is a substring

B′ of B and an i such that ed(Ai, B
′) < ki.

Lemma 1 is a particular case of Lemma 2: set ki = k/j + ε for sufficiently
small ε > 0. Our lemma reminds Lemma 2 of [4], and they can be proved to
be equivalent. The current formulation is more advantageous for us because
one does not need to know j. It can be used to adapt the error levels to the
length of the pieces. For example, to try to maintain a constant error level, take
ki = (1 + ε) k · |Ai|/|A| with ε > 0.
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3.2 Partial q-Sample Matching

Contrary to all previous work, let us assume that A in Lemma 2 is not only that
part of an approximate occurrence O formed by full q-samples, but instead that
A = O, so that A1 is the suffix of a sample and Aj is the prefix of a sample.
An advantage of this is that now the number of involved q-samples is at least
j = �(m − k)/q	, and therefore we can permit fewer errors per piece (e.g. �k/j�
using Lemma 1). On the other hand, we would like to allow fewer errors for
the pieces A1 and Aj . Yet, notice that any text q-sample can participate as A1,
Aj , or as a fully contained q-sample in different occurrences at different text
positions. Lemma 2 tells us that we could allow ki = (1+ ε) k · |Ai|/|A| errors for
Ai, for any ε > 0. Conservatively, this is ki = (1 + ε) k · q/(m − k) for 1 < i < j,
and less for the extremes.

In order to adapt the trie searching technique to those partial q-samples, we
should not only search all the text q-samples with (1+ε) k ·q/(m−k), but also all
their prefixes and suffixes with fewer errors. This includes, for example, verifying
all the q-samples whose first or last character appears in P (cases |A1| = 1 and
|Aj | = 1). This is unaffordable. Our approach will be to redistribute the errors
across A using Lemma 2 in a different way to ensure that only sufficiently long
q-sample prefixes and suffixes are considered.

Let v be a non-negative integer parameter. We associate to every letter of A a
weight: the first and last v letters have weight 0 and the remaining letters have
weight (1+ ε)/(|A|−2v). We define |Ai|v as the sum of the weights of the letters
of Ai. For example if Ai is within the first v letters of A then |Ai|v = 0; if it does
not contain any of the first or last v letters then |Ai|v = (1 + ε) |Ai|/(|A| − 2v).

We can now apply Lemma 2 with ki = k · |Ai|v provided that k > 0. Note
that

∑j
i=1 ki = (1 + ε) k > k. In this case, if |A1| ≤ v we have that k1 = 0 and

therefore A1 can never be found with strictly less than zero errors. The same
holds for Aj . This effectively relieves us from searching for any q-sample prefix
or suffix of length at most v.

Parameter v is thus doing the job of discarding q-samples that have very
little overlap with the occurrence O = A, and maintaining the rest. It balances
between two exponential costs: one due to verifying all the occurrences of too
short prefixes/suffixes, and another due to permitting too many errors when
searching for the pieces in the trie. In practice tuning this parameter will have
a very significant impact on performance.

3.3 A Hybrid q-Samples Index

We have explained all the ideas necessary to describe a hybrid q-samples index.
The algorithm works in two steps. First we determine all the q-samples Oi for
which ed(Oi, P

′) < k · |Oi|v for some substring P ′ of P . In this phase we also
determine the q-samples that contain a suffix O1 for which ed(O1, P

′) < k · |O1|v
for some prefix P ′ of P (note that we do not need to consider substrings of P , just
prefixes). Likewise we also determine the q-samples that contain a prefix O′

j for
which ed(Oj , P

′) < k · |Oj |v for some suffix P ′ of P (similar observation). The q-
samples that classify are potentially contained inside an approximate occurrence
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of P , i.e. Oi may be a substring of a string O such that ed(O, P ) ≤ k. In order
to verify whether this is the case, in the second phase we scan the text context
around Oi with a sequential algorithm.

As the reader might have noticed, the problem of verifying conditions such
as ed(Oi, P

′) < k · |Oi|v is that we cannot know a priori which i does a given
text q-sample correspond to. Different occurrences of the q-sample in the text
could participate in different positions of an O, and even a single occurrence in
T could appear in several different O’s. We do not know either the size |O|, as
it may range from m − k to m + k.

A simple solution is as follows. Conservatively assume |O| = m − k. Then,
search P for each different text q-sample in three roles: (1) as a q-sample con-
tained in O, so that |Oi| = q, assuming pessimistically |Oi|v = (1+ε) min(q/(m−
k − 2v), 1); (2) as an O1, matching a prefix of P for each of the q-sample suffixes
of lengths v < � < q, assuming |O1| = � and thus |O1|v = (1 + ε) min((� −
v)/(m−k−2v), 1); (3) as an Oj , matching a suffix of P for each of the q-sample
prefixes, similarly to case (2) (that is, |Oj |v = |O1|v). We assume that q < m−k
and therefore the case of O contained inside a q-sample does not occur.

In practice, one does not search for each q-sample in isolation, but rather
factors out the work due to common q-gram prefixes by backtracking over the
trie and incrementally computing the dynamic programming matrix between
every different q-sample and any substring of P (see [4]). We note that the trie
of q-samples is appropriate for role (3), but not particularly efficient for roles
(1) and (2) (finding q-samples with some specific suffix). In our application to a
Lempel-Ziv index this will not be a problem because we will have also a trie of
the reversed phrases (that will replace the q-grams).

4 Using a Lempel-Ziv Self-index

We now adapt our technique to the irregular parsing of phrases produced by a
Lempel-Ziv-based index. Among the several alternatives [21,22,26,27,28], we will
focus on the ILZI [28], yet the results can be carried over to similar indexes.

The ILZI partitions the text into phrases such that every suffix of a phrase is
also a phrase (similarly to LZ78 compressors [32], where every prefix of a phrase
is also a phrase). It uses two tries, one storing the phrases and another storing
the reverse phrases. In addition, it stores a mapping that permits moving from
one trie to the other, and it stores the compressed text as a sequence of phrase
identifiers. This index [28] has been shown to require O(uHk) bits of space, and
to be efficient in practice. We do not need more details for this paper.

4.1 Handling Different Lengths

As explained, the main idea is to use the phrases instead of q-samples. For this
sake Lemma 2 solves the problem of distributing the errors homogeneously across
phrases. However, other problems arise especially for long phrases. For example,
an occurrence could be completely inside a phrase. In general, backtracking over
long phrases is too costly.
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We resort again to q-samples, this time within phrases. We choose two non-
negative integer parameters q and s < q. We will look for any q-gram of P that
appears with less than s errors within any phrase. All phrases spotted along this
process must be verified. Still, some phrases not containing any pattern q-gram
with < s errors can participate in an occurrence of P (e.g. if �(m−k−q+1)/q�·s ≤
k or if the phrase is shorter than q). Next we show that those remaining phrases
have certain structure that makes them easy to find.

Lemma 3. Let A and B be strings and q and s be integers such that 0 ≤ s <
q ≤ |A| and for any substrings B′ of B and A′ of A with |A′| = q we have that
ed(A′, B′) ≥ s. Then for every prefix A′ of A there is a substring B′ of B such
that ed(A′, B′) ≤ ed(A, B) − s�(|A| − |A′|)/q�.

The lemma implies that, if a phrase is close to a substring of P , but none of
its q-grams are sufficiently close to any substring of P , then the errors must be
distributed uniformly along the phrase. Therefore we can check the phrase pro-
gressively (for increasing prefixes), so that the number of errors permitted grows
slowly. This severely limits the necessary backtracking to find those phrases that
escape from the q-gram-based search.

Parameter s permits us balancing between two search costs. If we set it low,
then the q-gram-based search will be stricter and faster, but the search for the
escaping phrases will be costlier. If we set it high, most of the cost will be
absorbed by the q-gram search.

4.2 A Hybrid Lempel-Ziv Index

The following lemma describes the way we combine previous results to search
using a Lempel-Ziv index.

Lemma 4. Let A and B be strings such that 0 < ed(A, B) ≤ k. Let A =
A1A2 . . . Aj , for strings Ai and some j ≥ 1. Let q, s and v be integers such
that 0 ≤ s < q ≤ |A| and 0 ≤ v < |A|/2. Then there is a substring B′ of B and
an i such that either:

1. there is a substring A′ of Ai with |A′| = q and ed(A′, B′) < s, or
2. ed(Ai, B

′) < k · |Ai|v in which case for any prefix A′ of Ai there exists a
substring B′′ of B′ such that ed(A′, B′′) < k · |Ai|v − s�(|Ai| − |A′|)/q�.

As before the search runs in two phases. In the first phase we find the phrases
whose text context must be verified. In the second phase we verify those text
contexts for an approximate occurrence of P . Lemma 4 gives the key to the first
phase. We find the relevant phrases via two searches:

(1) We look for any q-gram contained in a phrase which matches within
P with less than s errors. We backtrack in the trie of phrases for every P [y1..],
descending in the trie and advancing y2 in P [y1, y2] while computing the dynamic
programming matrix between the current trie node and P [y1, y2]. We look for
all trie nodes at depth q that match some P [y1, y2] with less than s errors. Since
every suffix of a phrase is a phrase in the ILZI, every q-gram within any phrase
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can be found starting from the root of the trie of phrases. All the phrases Z
that descend from each q-gram trie node found must be verified (those are the
phrases that start with that q-gram). We must also spot the phrases suffixed by
each such Z. Hence we map each phrase Z to the trie of reverse phrases and also
verify all the descent of the reverse trie nodes. This covers case 1 of Lemma 4.

(2) We look for any phrase Ai matching a portion of P with less than k · |Ai|v
errors. This is done over the trie of phrases. Yet, as we go down in the trie (thus
considering longer phrases), we can enforce that the number of errors found
up to depth d must be less than k · |Ai|v − s�(|Ai| − d)/q�. This covers case
2 in Lemma 4, where the equations vary according to the roles described in
Section 3.3 (that is, depending on i):

(2.1) 1 < i < j, in which case we are considering a phrase contained inside
O that is not a prefix nor a suffix. The k · |Ai|v formula (both for the matching
condition and the backtracking limit) can be bounded by (1+ε) k·min(|Ai|/(m−
k − 2v), 1), which depends on |Ai|. Since Ai may correspond to any trie node
that descends from the current one, we determine a priori which |Ai| ≤ m − k
maximizes the backtracking limit. We apply the backtracking for each P [y1..].

(2.2) i = j, in which case we are considering a phrase that starts by a suffix
of O. Now k · |Ai|v can be bounded by (1 + ε) k · min((d − v)/(m − k − 2v), 1),
yet still the limit depends on |Ai| and must be maximized a priori. This time
we are only interested in suffixes of P , that is, we can perform m searches with
y2 = m and different y1. If a node verifies the condition we must consider also
those that descend from it, to get all the phrases that start with the same suffix.

(2.3) i = 1, in which case we are considering a phrase that ends in a prefix of
O. This search is as case i = j, with similar formulas. We are only interested in
prefixes of P , that is y1 = 0. As the phrases are suffix-closed, we can conduct a
single search for P [0..] from the trie root, finding all phrase suffixes that match
each prefix of P . Each such suffix node must be mapped to the reverse trie and
the descent there must be included. The case i = j = 1 is different, as it includes
the case where O is contained inside a phrase. In this case we do not require
the matching trie nodes to be suffixes, but also prefixes of suffixes. That is, we
include the descent of the trie nodes and map each node in that descent to the
reverse trie, just as in case 1.

5 Practical Issues and Testing

We implemented a prototype to test our algorithm on the ILZI compressed in-
dex [28]. As a baseline we used efficient sequential bit-parallel algorithms (namely
BPM, the bit-parallel dynamic programming matrix of Myers [33], and EXP, the
exact pattern partitioning by Navarro and Baeza-Yates [34]).

For the real prototype we used a stricter backtracking than as explained in
previous sections. For each pattern substring P [y1, y2] to be matched, we com-
puted the maximum number of errors that could occur when matching it in the
text, also depending on the position O[x1, x2] where it would be matched, and
maximizing over the possible areas of O where the search would be necessary. For
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Table 1. Memory peaks, in Megabytes, for the different approaches when k = 6

ILZI Hybrid LZI DLZI FMIndex

English 55 257 145 178 131
DNA 45 252 125 158 127
Proteins 105 366 217 228 165

example, the extremes of P can be matched with fewer errors than the middle.
This process involves precomputing tables that depend on m and k. We omit
the details for lack of space.

We also included in the comparison an implementation of a filtration index us-
ing the simple approach of Lemma 1 with A = P and B = O, as briefly described
in the beginning of Section 2 [31]. The indexes used in that implementation are
the LZ-index [22] (LZI) and Navarro’s implementation of the FM-index [21]. We
also compare an improved variant over the LZ-index (DLZI [31]). Note that the
FM-Index does not divide the text into blocks, however it takes longer to locate
occurrences.

The machine was a Pentium 4, 3.2 GHz, 1 MB L2 cache, 1GB RAM, run-
ning Fedora Core 3, and compiling with gcc-3.4 -O9. We used the texts from
the Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl), with 50 MB of
English and DNA and 64 MB of proteins. The pattern strings were sampled ran-
domly from the text and each character was distorted with 10% of probability.
All the patterns had length m = 30. Every configuration was tested during at
least 60 seconds using at least 5 repetitions. Hence the numbers of repetitions
varied between 5 and 130,000. To parametrize the hybrid index we tested all the
j values from 1 to k + 1 and reported the best time. To parametrize we choose
q = �m/h� and s = �k/h�+1 for some convenient h, since we can prove that this
is the best approach and it was corroborated by our experiments. To determine
the value of h and v we also tested the viable configurations and reported the
best results. In our examples choosing v and h such that 2v is slightly smaller
than q yielded the best configuration.

The average query time, in seconds, is shown in Fig. 1 and the respective
memory heap peaks for indexed approaches are shown in Table 1. The hybrid
index provides the fastest approach to the problem, however it also requires
the most space. Aside from the hybrid index our approach is always either the
fastest or within reasonable distance from the fastest approach. For low error
level, k = 1 or k = 2, our approach is significantly faster, up to an order of
magnitude better. This is very important since the compressed approaches seem
to saturate at a given performance for low error levels: in English k = 1 to 3, in
DNA k = 1 to 2, and in proteins k = 1 to 5. This is particularly troublesome
since indexed approaches are the best alternative only for low error levels. In
fact the sequential approaches outperform the compressed indexed approaches
for higher error levels. In DNA this occurs at k = 4 and in English at k = 5.

Our index performed particularly well on proteins, as did the hybrid index.
This could owe to the fact that proteins behave closer to random text, and this
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Fig. 1. Average user time for finding the occurrences of patterns of size 30 with k
errors. The y axis units are in seconds and common to the three plots.

means that the parametrization of ours and the hybrid index indeed balances
between exponential worst cases.

In terms of space the ILZI is also very competitive, as it occupies almost the
same space as the plain text, except for proteins that are not very compress-
ible. We presented the space that the algorithms need to operate and not just
the index size, since the other approaches need intermediate data structures to
operate.

6 Conclusions and Future Work

In this paper we presented an adaptation of the hybrid index for Lempel-Ziv com-
pressed indexes. We started by addressing the problem of approximate matching
with q-samples indexes, where we described a new approach to this problem. We
then adapted our algorithm to the irregular parsing produced by Lempel-Ziv
indexes. Our approach was flexible enough to be used as a hybrid index instead
of an exact-searching-based filtration index. We implemented our algorithm and
compared it with the simple filtration approach built over different compressed
indexes, with sequential algorithms, and with a good uncompressed index.

Our results show that our index provides a good space/time tradeoff, using
a small amount of space (at best 0.9 times the text size, which is 5.6 times less
than a classical index) in exchange for searching from 6.2 to 33 times slower
than a classical index, for k = 1 to 3. This is better than the other compressed
approaches for low error levels. This is significant since indexed approaches are
most valuable, if compared to sequential approaches, when the error level is low.
Therefore our work significantly improves the usability of compressed indexes
for approximate matching.
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A crucial part of our work was our approach for the prefixes/suffixes of O. This
approach is in fact not essential for q-samples indexes, however it can improve
previous approaches [18]. However for a Lempel-Ziv index it is essential.

Finally, our implementation can be further improved since we do no secondary
filtering, that is, we do not apply any sequential filter over the text context
before fully verifying them. We also plan to further explore the idea of associating
weights to the letters of O. We will investigate the impact of as assigning smaller
weights to less frequent letters of O. This should decrease the number of positions
to verify and improve the overall performance.

Acknowledgments. We are thankful to Pedro Morales for lending us the LZI,
DLZI and FMIndex prototypes.
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Abstract. We consider the matching of weighted patterns against an
unweighted text. We adapt the shift-add algorithm for this problem. We
also present an algorithm that enumerates all strings that produce a score
higher than a given score threshold when aligned against a weighted pat-
tern and then searches for all these strings using a standard exact mul-
tipattern algorithm. We show that both of these approaches are faster
than previous algorithms on patterns of moderate length and high sig-
nificance levels while the good performance of the shift-add algorithm
continues with lower significance levels.

1 Introduction

In a weighted matching problem the text or the pattern is a weighted sequence
where in each position a weight is assigned to each character of the alphabet.
In this paper we consider the case where the pattern is weighted and the text
unweighted and we are interested in finding alignments where the score, which
is the sum of the weights in the pattern corresponding to the aligned characters
in the text, is larger than some given score threshold.

Weighted patterns arise for example in the modeling of transcription factor
binding sites in bioinformatics. In bioinformatics weighted patterns are called po-
sition weight matrices, position specific scoring matrices or profiles. The weight
of a nucleotide in a given position describes the log probability of that nucleotide
appearing in that position in a transcription factor binding site. Therefore the
score of an alignment is the log probability of that alignment being a transcrip-
tion factor binding site. Many methods in bioinformatics rely on the large scale
scanning of these weighted patterns against a genome and there are large public
databases, like TRANSFAC [5] containing such patterns.

In this paper we adapt some standard string matching techniques to the
weighted matching problem and compare the performance of these algorithms
against the algorithm by Liefooghe et al. [4]. In Section 4, we adapt the shift-add
[1] algorithm to handle weighted patterns and in Section 5 we consider the enu-
meration of all strings matching a given weighted pattern and searching for these
strings by a standard multipattern algorithm. We compare our new approaches
to the previous algorithm by Liefooghe et al. [4] in Section 6. The preliminary
experimental results show that for high significance levels the enumeration ap-
proach is the fastest for pattern lengths 7 to 19 while the shift-add algorithm is
� Work by Jorma Tarhio was supported by Academy of Finland.

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 276–286, 2007.
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i 1 2 3 4 5 6 7 8 9 10 11 12

a 7 −6 −5 −10 −8 −10 4 −10 −10 −2 −10 −10
c −5 −8 −10 14 −10 −8 −10 −10 −10 11 −10 −10
t 6 13 −10 −8 −10 12 −10 −10 −10 −3 −10 9
g −5 −6 13 −10 14 −1 11 14 14 −10 14 6

Fig. 1. An example weighted pattern corresponding to the EGR-1 family extracted
from TRANSFAC

the fastest for shorter and longer patterns. For the longest patterns either the
algorithm by Liefooghe et al. or the shift-add algorithm is the fastest. For lower
significance levels the shift-add algorithm is the fastest.

After submitting this paper we learned that Pizzi et al. [7] have also developed
an algorithm based on the enumeration approach. However, they use a different
multipattern algorithm to search for the enumerated strings while we use an
algorithm tuned for very large pattern sets and low expected number of hits.

2 Definitions

We consider the matching of weighted patterns against an unweighted text. The
text is a sequence of characters from an alphabet Σ of size σ. The weighted
pattern assigns weights to all characters of the alphabet for each position of the
pattern.

Definition 1. A weighted pattern of length m is an m × σ matrix p of integer
coefficients p[i, c] which give the weight of the character c ∈ Σ at position i where
1 ≤ i ≤ m.

Figure 1 shows an example of a weighted pattern. Here we will only consider
weighted patterns with integer weights. Weighted patterns are obtained from
entropy or log odd matrices that have real coefficients but in practice these are
rounded to integer matrices to allow for more efficient computation.

Given a weighted pattern and a string of characters from the alphabet Σ the
score of this string is defined as follows:

Definition 2. Given a weighted pattern p of length m and a string t of length
m from the alphabet Σ, the score of the pattern aligned with the string is defined
as:

score(p, t) =
m∑

i=1

p[i, ti]

In the weighted matching problem we are interested in finding all those align-
ments of a text with the pattern that yield a large enough score:

Definition 3. Given a weighted pattern p of length m, a score threshold α and
an unweighted text t1...n, find all such alignments i of the pattern with the text
that score(p, ti...i+m−1) ≥ α.
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Given a weighted matching problem, p-value [2,10] is a measure that can be used
to estimate the statistical significance of the returned alignments. The p-value
is defined as follows:

Definition 4. Given a weighted matching problem with pattern p and score
threshold α, p-value(p, α) is the probability that a given background model of
the sequence produces a score equal to or greater than the score threshold α.

In this paper we assume that the background model is the standard random
string model where each character of the sequence is chosen independently and
uniformly. In this case the p-value can be computed with the following recursion:

p-value(p[1...0], α) =
{

1 if α ≤ 0
0 otherwise

p-value(p[1...i], α) =
1
σ

∑

c∈Σ

p-value(p[1...i − 1], α − p[i, c])

3 Previous Work

The brute force algorithm for the weighted matching problem calculates the score
for each alignment of the pattern with the text and reports those alignments that
yield a score higher than the score threshold. Lately various techniques have been
proposed to speed up this scheme. Here we will review those techniques that are
relevant to our work. See [8] for a survey on previous work.

Several algorithms use the lookahead technique [11] which provides a way to
prune the calculation in a single alignment. For all suffixes of the pattern, there is
a maximum score that they can contribute to the overall score. If after matching
the prefix of the pattern, the score is not at least the score threshold minus
maximum score of the suffix, there cannot be a match at this alignment. By
calculating the maximum score for each pattern suffix, the overall computation
time can be significantly reduced.

In Section 6 we will compare our algorithms to the algorithm by Liefooghe et
al. [4]. Their algorithm uses the lookahead technique and in addition it divides
the pattern into submatrices and precalculates for all possible strings the score
yielded by each submatrix. For example, if we had a pattern of length 12, we
could divide it to three submatrices of length four and then precalculate the
scores of each submatrix for all the σ4 possible strings. At matching time we can
then just lookup the scores of each submatrix in a table.

4 Shift-Add for Weighted Matching

In this section we will adapt the shift-add algorithm [1] to weighted matching.
Originally the shift-add algorithm was designed for the k-mismatch problem
where the task is to find all substrings of the text that match the pattern with
at most k mismatches. The algorithm works as follows.
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For each pattern position i from 1 to m the algorithm has a variable si indi-
cating with how many mismatches the suffix of length i of the text read so far
matches the pattern prefix of length i. If the variables si can be represented in b
bits, we can concatenate all these variables into a single vector s = smsm−1 . . . s1

of length mb. In the preprocessing phase we initialize for each symbol c in the
alphabet a vector T [c] where the bits in the position of si are 0b if c equals pi

and 0b−11 otherwise. The vector s (and hence also the variables si) can then in
the matching phase be all updated at the same time when the next character c
from the text is read:

s = (s � b) + T [c]

The algorithm has found a match if sm ≤ k.
If the variables si count mismatches, the maximum value that they can reach

is m. However, in the k-mismatch problem it is enough to be able to represent
values in the range [0, k + 1] yielding b = �log(k + 1)�. However, we need an
additional bit so that the possible carry bits do not interfere with the next
variable. With this modification the update operation of the algorithm becomes:

s = (s � b) + T [c]
of = (of � b) | (s & (10b−1)m)
s = s & (01b−1)m

Here the first line updates the variables si, the second one keeps track of those
variables si that have overflowed and the last one clears the carry bits. When
checking for a match, we now also need to check that the variable sm has not
overflowed which can be seen from the of vector. The shift-add algorithm for the
k-mismatch problem has time complexity O(n�mb

w �) where b = �log(k + 1)� + 1
and w is the size of the computer word in bits.

We will now present the shift-add algorithm for weighted matching with posi-
tive restricted weights. Then we will show how a general weighted pattern match-
ing problem can be transformed into such a restricted problem. The weights of
the weighted matching problem with positive restricted weights have the follow-
ing properties:

1. ∀i, 1 ≤ i ≤ m, ∀c ∈ Σ, 0 ≤ p[i, c] ≤ α
2. ∀i, 1 ≤ i ≤ m ∃c ∈ Σ such that p[i, c] = 0

where p is the weighted pattern of length m and α is the score threshold. Property
1 is needed for the correct operation of the shift-add algorithm while Property 2
merely serves as a way to lower the score threshold and thus lower the number
of bits needed for the variables si as will be seen later.

The adaptation of the shift-add algorithm to weighted matching with positive
restricted weights is quite straightforward. Now instead of counting mismatches,
we will be calculating scores so the variables si contain the score of the suffix of
length i of the text read so far as compared to the prefix of length i of the pattern.
For the update operation the bits corresponding to si in the preprocessed vectors
T [c] now contain the weight of the character c at position i. The update operation
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is exactly as in the shift-add algorithm for the k-mismatch problem. If after the
update operation the score sm ≥ α or the variable sm has overflowed, a match
is reported.

Property 1 of the weighted matching problem with positive restricted weights
states that all weights are non-negative and thus

score(p1...i, tj...j+i+1) ≤ score(p1...i+1, tj...j+i+2) .

Because the score can only increase when reading a new character, we can trun-
cate the score values to α. Property 1 further states that all weights are at
most α. Thus, if we truncate the score values to α, after the update operation
the variables si ≤ 2α so 1 carry bit is enough. Therefore we need to reserve
b = �log α�+1 bits for each variable si and the time complexity of the algorithm
is O(n�m(�log α�+1)

w �).
In the weighted matching problem the weights can be, and in practice often

are, negative. The following observation points us to a way to transform any
weighted matching problem to a weighted matching problem with positive re-
stricted weights. Let p be a weighted pattern of length m and let p′ be a weighted
pattern such that for some i, 1 ≤ i ≤ m, p′[i, c] = p[i, c] + h for all c ∈ Σ and
some constant h, and for all j 
= i , 1 ≤ j ≤ m, and all c ∈ Σ, p′[j, c] = p[j, c].
Then the following holds for the scores of p and p′ aligned with any string t of
length m:

score(p′, t) = score(p, t) + h

Therefore the weighted pattern matching problem for a text t, pattern p and
score threshold α returns exactly the same alignments as the weighted pattern
matching problem for a text t, pattern p′ and score threshold α′ = α + h.

Now given a weighted pattern matching problem with a score threshold α and
a pattern p containing any integer weights we can transform the problem into an
equivalent problem with a score threshold α′ and a pattern p′ containing only
non-negative weights.

To reduce the score threshold (and thus also the number of bits needed for
the variables si) we further transform the pattern so that in each position at
least one of the weights equals zero by adding an appropriate negative constant
h to all weights in that position and by adjusting the score threshold also by
h. Furthermore, if now any weight is larger than the score threshold, it can
be truncated to the score threshold without affecting the returned alignments
because the score of an alignment cannot get smaller as more characters are
read. The scores of those alignments will however be lower. As a result we have
transformed a weighted matching problem into a weighted matching problem
with positive restricted weights.

In practice weighted patterns are obtained by rounding log-odd or entropy
matrices to integer matrices. Thus the values of the weights depend on how
much precision is preserved by this rounding and furthermore practical values
of the threshold α depend on the weights. Because of the �log α� + 1 factor in
the running time the shift-add algorithm is somewhat sensitive to the precision
of this rounding unlike other algorithms.
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enumerate(p, α)
1. recurse(1, 0)

string s

recurse(i, score)
1. if (α > score + max score(i...m))
2. return
3. if (i > m and score ≥ α)
4. add string(s)
5. else
6. for each c ∈ Σ
7. s[i] = c
8. recurse(i + 1, score + p[i, c])

Fig. 2. Pseudo code for enumerating all strings that produce a score higher than or
equal to the score threshold α

5 Enumeration Algorithms

For short patterns it is possible to enumerate all matching strings which are the
strings that produce a score higher than the score threshold when aligned with
the weighted pattern. The enumerated strings can then be searched for with an
exact multipattern matching algorithm.

The enumeration of matching strings is done with a recursive algorithm. At
recursion level i we have constructed a string of length i − 1 that is a possible
prefix of a matching string and we try to expand that prefix with all characters
of the alphabet. This way we have to calculate the score of each prefix only once.
The recursion can further be pruned with the lookahead technique. Suppose we
have enumerated a prefix of length i − 1 with score scorei and the maximum
score of a suffix of length m − i is max score(i...m) then if the score threshold
α > scorei + max score(i...m) then at this branch of the recursion no matching
strings can be found. The pseudo code for enumerating the matching strings is
given in Fig. 2.

Because the number of enumerated strings is often very large, we used the
multipattern BNDM with q-grams (BG) [9] algorithm which is especially tuned
for large pattern sets. The BG algorithm first builds a filter, which is a pattern
of classes of characters. In this filter all characters that appear in any of the
single patterns in position i are accepted at that position. The backward nonde-
terministic DAWG matching (BNDM) [6] algorithm is then used to scan the text
with this filter. The returned alignments are verified with a Rabin-Karp [3] style
algorithm. When the number of patterns grows the filtering is no longer efficient
enough because almost every alignment will match the filter. To boost the filter-
ing efficiency, the BG algorithm uses q-grams instead of single characters in the
filtering phase. If matches are sufficiently rare (i.e. the p-value(p, α) is sufficiently
low), the BG algorithm has average case running time O(n log1/d m/m) where
d = 1 − (1 − 1/σq)r where r is the number of patterns.
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Fig. 3. The length distribution of patterns in the TRANSFAC database

p-value(p, α) gives the probability of a random string to produce a score
equal to or greater than α when aligned with the weighted pattern p. If the
background model assumes that all characters are chosen independently and
uniformly, p-value(p, α) gives the proportion of all possible strings for which
the score is at least α. Thus the expected number of enumerated strings is
σmp-value(p, α) because there are σm different strings of length m.

In practice, it turned out to be reasonably fast to enumerate matching strings
up to pattern length 16. With larger patterns we enumerated only 16 characters
long prefixes of the matching strings and the algorithm verifies the found matches
later.

The enumeration approach is easy to adjust to searching for multiple weighted
patterns at once. All we need to do is to enumerate for all of the weighted
patterns the strings producing high enough scores and then search for all these
enumerated strings.

6 Experimental Results

For all experimental testing we used a computer with a 2.0 GHz AMD Opteron
dual-processor and 6 GB of memory. The machine was running the 64-bit version
of Linux 2.6.15. The tests were written in C and compiled with the gcc 4.1.0 com-
piler. The patterns were extracted from the TRANSFAC database [5]. Figure 3
shows the length distribution of the patterns. As can be seen the length of most
patterns is between 8 and 22 nucleotides. In particular there are only a few pat-
terns of length over 22 and thus the results concerning these pattern lengths are
only tentative. The text we used was a chromosome from the fruitfly genome
(20 MB).

Figure 4 shows a runtime comparison of the algorithm by Liefooghe, Touzet
and Varré (LTV) [4], shift-add algorithm (sa) and the enumeration algorithm
(ebg) for two p-values. The algorithms were run 10 times with each pattern
and the average runtime was calculated. The figure shows average runtimes of
patterns of same length. The measured runtime excludes the time used for pre-
processing.
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Fig. 4. Runtime comparison of different methods for p-values (a) 10−3 and (b) 10−5

For the LTV algorithm we did not count the optimum length of the submatri-
ces as presented in the original paper by Liefooghe et al. [4] because the optimum
length calculation does not take into account cache effects and these surely have
a significant effect on the runtime. Instead we tried the algorithm with submatrix
lengths from 4 to 8 and included the best results in the comparison. With this
modification the method is actually the same as the superalphabet algorithm of
Pizzi et al. [7].

The optimal value for q in the LTV algorithm is lower for shorter patterns and
for higher p-values but it does not affect the runtime of the algorithm very much
until it reaches the value 8 when the tables no longer all fit into the cache. We can
see that for the p-value 10−3 the runtime increases slowly until pattern length 11
and for the p-value 10−5 the runtime stays almost constant until pattern length
15. Until that time it is almost always sufficient to calculate the index of the
first precalculated score table corresponding to the first submatrix because the
lookahead technique then reports that a match at that position is not possible.
When the pattern length increases further, more and more accesses are needed
to the second precalculated table until at pattern length 14 for the p-value 10−3

and at pattern length 19 for the p-value 10−5 at almost every position we need
to consult both the first and the second precalculated table.

Figure 4 shows that the runtime of the shift-add algorithm increases each
time we need more words to represent the state vector. For pattern lengths
{5−8, 8−14, 15−21, 19−24, 25−30} we need state vectors of size {1, 2, 3, 4, 5}
words, respectively. Between lengths 19 and 21 some patterns need state vectors
of 3 words while others need 4 words. Similarly for pattern length 8 some patterns
need state vectors of 1 word while others need already 2 words. The number of
words needed does not change from the p-value 10−3 to the p-value 10−5.

We ran the enumeration algorithm with several different values of q and chose
the value that gives the best runtime. For the p-value 10−3 and pattern lengths
{5 − 7, 8 − 9, 10, 11, 12 − 15} the values {4, 5, 6, 7, 8}, respectively, gave the best
results and for the p-value 10−5 and pattern lengths {5 − 11, 12, 13, 14, 15 − 20}
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the values {4, 5, 6, 7, 8}, respectively, gave the best results. We did not run the
enumeration algorithm for longer pattern lengths because the number of enumer-
ated patterns grew too large and already with these pattern lengths the algorithm
started to significantly slow down.

Overall Fig. 4 shows that for low significance levels (i.e. high p-values) the
shift-add algorithm is the fastest. For higher significance levels (i.e. smaller
p-values) the shift-add algorithm is the fastest for pattern lengths smaller than
7. The enumeration algorithm is fastest for patterns lengths 8 to 16. For longer
patterns the shift-add algorithm is the fastest at least until pattern length 25.
After that the differences between shift-add and LTV are so small that it is hard
to say anything conclusive because the TRANSFAC database contained so few
long patterns.

The preprocessing of the shift-add algorithm is very fast taking less than
0.01 s regardless of the pattern length. The preprocessing time for the LTV
algorithm ranges from less than 0.01 s to 0.09 s. The preprocessing time of the
enumeration algorithm is exponential in the length of the pattern. It stays under
0.01 s until pattern length 12 for the p-value 10−3 and until pattern length 16 for
the p-value 10−5. For longer patterns the preprocessing time increases to 0.93 s
for the p-value 10−3 and pattern length 15 and to 0.40 s for the p-value 10−5

and pattern length 20.
We also ran some experiments with the multiple pattern version of the enu-

meration algorithm. Because the single pattern algorithm worked well only for
high significance levels we ran the multiple pattern version only for the p-value
10−5. To get reliable results, we needed more patterns of each length than is
provided by the TRANSFAC database. To increase the number of patterns for
each pattern length we took prefixes of longer patterns and added these to our
pool of patterns until we had a hundred patterns of each length. This worked
up to pattern length 16 after which including prefixes of all longer patterns did
not bring the number of patterns to one hundred.

Figure 5 shows how the runtime of the algorithm behaves as a function of
pattern length and pattern set size r. As can be seen, the runtime decreases for
all pattern sets as pattern length increases until pattern length 8 because the BG
algorithm can make longer shifts. After pattern length 12 the filtering efficiency
of the BG algorithm starts to deteriorate and we need to make more verifica-
tions which increases the runtime. The filtering efficiency could be boosted by
increasing the value of parameter q but this would increase the amount of mem-
ory needed so that the structures frequently used by the algorithm no longer fit
in the data cache and this imposes an even larger penalty on the runtime.

Figure 5b shows that the runtime increases only slightly when the pattern set
size is increased for pattern lengths 8 through 14. For shorter pattern lengths
the performance of the algorithm deteriorates faster because so many positions
match at least one of the patterns. For longer patterns the filtering efficiency is
a problem even when searching for a single pattern and this problem is further
emphasized by increasing the pattern set size.
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Fig. 5. The runtime of the multipattern enumeration algorithm as a function of (a)
pattern length and (b) pattern set size
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Fig. 6. Preprocessing times for the multiple pattern enumeration algorithm

Preprocessing time of the multipattern algorithm is less than 0.01 s for all
pattern set sizes when the pattern length is at most 11. Figure 6 shows the
preprocessing times for longer patterns and various pattern set sizes.

The amortized running times (i.e. the running times per pattern) for the
multipattern enumeration algorithm are shown also in Fig. 4b for pattern set
sizes 10 and 100. As can be seen these times are much lower than the running
times of the other algorithms until pattern length 16. After that the runtime
starts to increase and after pattern length 20 it is probably faster to match one
pattern at a time using either the shift-add or the LTV algorithm.

7 Conclusions

We have presented two efficient algorithms for searching weighted patterns in
an unweighted text. We have showed that the algorithms are fast in practice
by comparing their performance on real data against the previous algorithm by
Liefooghe et al. [4].
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Abstract. In addition to purely occurrence-based relevance models,
term proximity has been frequently used to enhance retrieval quality
of keyword-oriented retrieval systems. While there have been approaches
on effective scoring functions that incorporate proximity, there has not
been much work on algorithms or access methods for their efficient eval-
uation. This paper presents an efficient evaluation framework including
a proximity scoring function integrated within a top-k query engine for
text retrieval. We propose precomputed and materialized index struc-
tures that boost performance. The increased retrieval effectiveness and
efficiency of our framework are demonstrated through extensive exper-
iments on a very large text benchmark collection. In combination with
static index pruning for the proximity lists, our algorithm achieves an
improvement of two orders of magnitude compared to a term-based top-k
evaluation, with a significantly improved result quality.

1 Introduction

Techniques for ranked retrieval of text documents have been intensively studied
including relevance scoring models such as tf*idf, Okapi BM25, and statistical
language models [13]. Most of the models in these families are based on the
(multinomial) bag-of-words representation of documents, with consideration of
term frequencies (tf) and inverse document frequencies (idf) but without con-
sidering term proximity. However, there are many queries where the best results
contain the query terms in a single phrase, or at least in close proximity.

To illustrate the importance of proximity, let us consider the query “surface
area of rectangular pyramids”. Schemes that do not take proximity into account
return general mathematical documents in which all the four terms surface, area,
rectangular and pyramid are individually important, but the document does not
necessarily contain information about the surface area of rectangular pyramids
(for example, it may discuss the volume of pyramids and the area of rectangular
prisms. On the other hand, an exact phrase match “surface area of rectangu-
lar pyramids” would most certainly ensure that the document retrieved is of
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the desired type, but strictly enforcing such phrase matchings in a boolean way
would exclude many relevant results. A good proximity-aware scoring scheme
should give perfect phrase matches a high score, but reward also high proximity
matches such as “surface area of a rectangular -based pyramid” with good scores.
There has been a number of proposals in the literature for such proximity-aware
scoring schemes [5,6,9,10,16,18,20]; however, none of these proposals considered
efficiently finding the best results to queries in a top-k style with dynamic prun-
ing techniques. This paper shows that integrating proximity in the scoring model
can not only improve retrieval effectiveness, but also improve retrieval efficiency
by up to two orders of magnitude compared to state-of-the-art processing algo-
rithms for purely occurrence-based scoring models.

2 Related Work

Using phrases is a common means in term queries to restrict the results to
those that exactly contain the phrase and is often useful for effective query
evaluation [7]. A simple way to efficiently evaluate phrases are word-level in-
dexes, inverted files that maintain positional information [24]. There have been
some proposals for specialized index structures for efficient phrase evaluation
that utilize term pair indexes and/or phrase caching, but only in the context of
boolean retrieval and hence not optimized for top-k style retrieval with ranked
results [8,22,23]. There are proposals to extend phrases to window queries, where
users can specify the size of a window that must include the query terms to favor
documents containing all terms within such a window [15,17,4]. However, this
line of works has treated term proximity only as an afterthought after ranking,
i.e., proximity conditions are formulated as a simplistic Boolean condition and
optimized as separate post-pruning step after rank evaluation.

More recently, some scoring models were proposed that integrate content and
proximity scores for ranking results [5,6,9,10,16,18,20]. These scoring models
can be categorized into the following two classes. First, linear combination ap-
proaches attempt to reflect proximity in the scoring by linearly combining a
proximity score with a text-based content score [5,6,16,18]. Monz quantified the
proximity score based on the size of the minimum window containing all query
keywords occurring in the document [16]. Rasolofo et al. consider term pairs that
occur together in a small window in a document, and use a distance-based prox-
imity score for these term pairs [18]. Büttcher et al. extend on this work by con-
sidering adjacent query term occurrences without a limit on the window size and
use a proximity score similar to BM25 for text [5,6]. Second, holistic approaches
have more tightly integrated proximity metrics and content scoring [9,10,20].
De Kretser and Moffat [10] and Clarke et al. [9] proposed scoring methods that
reward the density of query terms in documents, and Song et al. [20] integrate a
similar term density score within a BM25-based scoring model. However, none
of the proximity proposals we are aware of has been designed to be used within
a top-k style evaluation.
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3 Processing Model

We consider a document di (i = 1, . . . , m), with which we associate n scores
si1, . . . , sin, each quantifying the relevance of di over n different dimensions like
terms or term pairs (e.g., tf*idf or BM25-based scores for query terms or, as
we will later introduce, proximity scores for term pairs). The scores are aggre-
gated using a monotonous function; we will focus on weighted summation as
aggregation function for ease of presentation.

Our processing uses algorithms from the family of Threshold Algorithms [12],
similar to dynamic pruning approaches in the IR community [1,2,14]. These
algorithms assume that the scores for each dimension j have been precomputed
and stored in an inverted list Lj which is sorted by descending score (or, in
IR terms, in frequency or impact order). The algorithms then sequentially scan
each list involved in the query execution in an interleaved, round robin manner.
As documents are discovered in this process, they are maintained as candidates
in an in-memory pool, where each candidate has a current score (aggregated
from the scores in dimensions where the document has been encountered so far).
Additionally, each candidate di has an upper score bound that is computed by
setting all unknown scores to the highest possible score highj corresponding to
the score at the current scan positions of the lists:

bestscore(di) =
n∑

j=1

(
sij if di seen in Lj

highj otherwise

)

(1)

For a top-k query, the algorithms maintain a list of the k candidates with the
highest current scores. Other candidates whose best score is below the lowest
current score of a top-k candidate can be safely pruned from the evaluation.
The execution can stop if all but the top-k candidates have been eliminated;
this is typically the case long before the lists have been completely read.

To further speed up the execution, some algorithms additionally make random
lookups for the scores of promising candidates in dimensions where they have
not yet been encountered; as such a random access (RA) is a lot more expensive
than a sequential scan (in the order of 100 to 1,000 times for real systems), an
intelligent schedule for these RAs has a great influence on efficiency. The different
variants within the family of threshold algorithms primarily differ in their RA
schedules; the currently most efficient variant [3] schedules all RAs only at the
end of the partial scans of inverted lists, namely, when the expected cost for RA
is below the cost for all sequential accesses so far.

4 Proximity Scoring

4.1 Proximity Scoring Models

We focus on proximity scoring models that use a linear combination of a content-
based score with a proximity score in the form of

score(d, q) = α · scorecontent(d, q) + (1 − α)scoreproximity(d, q)
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There are several proximity metrics in this category [5,6,16,18]. In preliminary
experiments on the TREC Terabyte collection, the scoring model proposed by
Büttcher et al. [5,6] (labelled Büttcher’s scoring model from now on) was the
only one to yield significant improvements in result quality over BM25-based
scoring, hence we use this model in our proximity-aware evaluation framework.

4.2 Büttcher’s Scoring Model

For a document d with length l, we denote the term occurring at position i of d
by pi(d), or pi when the document is uniquely given by the context. For a term
t, we denote by Pd(t) ⊆ {1, . . . , l} the positions in document d where t occurs;
or we write P (t). Given a query q = {t1 . . . tn}, we write Pd(q) := ∪ti∈qPd(ti)
for the positions of query terms in document d, or P (q) when d is given by the
context. We denote pairs of positions of distinct query terms in document d by

Qd(q) := {(i, j) ∈ Pd(q) × Pd(q) | i < j ∧ pi �= pj}

and pairs of adjacent occurrences of distinct query terms, possibly with non-
query terms in between, by

Ad(q) := {(i, j) ∈ Qd(q) | ∀k ∈ {i + 1, . . . , j − 1} : k �∈ Pd(q)}

Büttcher’s scoring model linearly combines the BM25 scoring function with
a proximity score for each query term into a proximity-aware document-level
score. Given a query q = {t1, . . . , tn} and a document d, they first compute an
accumulated interim score acc for each query term that depends on the distance
of this term’s occurrences to other, adjacent query term occurrences. Formally,

accd(tk) =
∑

(i,j)∈Ad(q):pi=tk

idf(pj)
(i − j)2

+
∑

(i,j)∈Ad(q):pj=tk

idf(pi)
(i − j)2

(2)

where idf is the inverse document frequency. The accumulated proximity score
increases the more, the less distant the occurrences of two adjacent terms are
and the less frequent the neighboring term is in the collection. The score for
a document d is then computed by a linear combination of a standard BM25-
based score and a proximity score, which is itself computed by plugging the
accumulated proximity scores into a BM25-like scoring function:

scoreBüttcher(d, q) = scoreBM25(d, q) +
∑

t∈q

min{1, idf(t)}accd(t) · (k1 + 1)
accd(t) + K

where, analogously to the BM25 formula,

K = k · [(1 − b) + b · |d|
avgdl

]

and b, k1, and k are configurable parameters that are set to b = 0.5 and k =
k1 = 1.2, respectively [5].
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4.3 Modified Büttcher Scoring Model

To include Büttcher’s proximity score into query processing, it would be intrigu-
ing to use a standard word-level inverted list and compute proximity scores on
the fly as a document is encountered. However, this is not feasible in a top-k
style processing as the proximity score is not upper bounded, and hence it is
not possible to compute tight score bounds for candidates which in turn disables
pruning. For an efficient computation of the top-k results, we need to precom-
pute proximity information into index lists that can be sequentially scanned and
compute tight score bounds for early pruning. The main problem with Büttcher’s
scoring function in this respect is that accd(t) is computed as a sum over adjacent
query term occurrences, which is inherently query dependent, and we cannot pre-
compute query-independent information. An additional, minor issue is that the
scoring function includes the document length which cannot be easily factorized
into a precomputed score contribution.

To solve this, we slightly modify Büttcher’s original scoring function; this does
not have much influence on result quality (as can be shown experimentally), but
allows for precomputation. In addition to dropping the document length by
setting b = 0 in the formula, we consider every query term occurrence, not only
adjacent occurrences. The modified accumulation function acc′ is defined as

acc′d(tk) =
∑

(i,j)∈Qd(q):pi=tk

idf(pj)
(i − j)2

+
∑

(i,j)∈Qd(q):pj=tk

idf(pi)
(i − j)2

(3)

As the value of acc′d(tk) does not depend only on d and tk, but also on the
other query terms, we still cannot precompute this value independently of the
query. However, we can reformulate the definition of acc′d(tk) as follows:

acc′d(tk) =
∑

t∈q

idf(t)

⎛

⎜
⎜
⎜
⎝

∑

(i, j) ∈ Qd(q) :
pi = tk, pj = t

1
(i − j)2

+
∑

(i, j) ∈ Qd(q) :
pi = t, pj = tk

1
(i − j)2

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
:=accd(tk,t)

(4)

=
∑

t∈q

idf(t) · accd(tk, t) (5)

We have now represented acc′d(tk) as a monotonous combination of query term
pair scores accd(tk, t). Note that term order does not play a role, i.e., accd(tk, t) =
accd(t, tk). We can precompute these pair scores for all term pairs occurring in
documents and arrange them in index lists that are sorted in descending score
order. Including these lists in the sequential accesses of our processing algorithm,
we can easily compute upper bounds for acc′d(tk) analogously to query term
dimensions by plugging in the score at the current scan position in the lists
where d has not yet been encountered. The current score of a document is then
computed by evaluating our modified Büttcher score with the current value of
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acc′d, and the upper bound is computed using the upper bound for acc′d; this is
correct as the modified Büttcher score is monotonous in acc′d.

5 Indexing and Evaluation Framework

5.1 Precomputed Index Lists and Evaluation Strategies

Our indexing framework consists of the following precomputed and materialized
index structures, each primarily used for sequential access, but with an additional
option for random access:

– TextIndexList (TL): for each term ti, a list of the form (dk, scoreBM25(dk,ti)),
sorted by descending score.

– ProxIndexList (PXL): for each unordered pair {ti, tj} of terms with ti < tj ,
a list of the form (dk, accdk

(ti, tj)), sorted by descending acc.
– CombinedIndexList (CL): for each unordered pair {ti, tj} of terms with ti <

tj , a list of the form (dk, accdk
(ti, tj), scoreBM25(dk, ti), scoreBM25(dk, tj))),

sorted by descending acc.

These index structures can be combined into several processing strategies:

– TL: This corresponds to standard, text-based retrieval without proximity.
– PXL: This scans only the proximity lists and uses the proximity part of our

modified Büttcher scoring function for ranking.
– TL+PXL: This scans proximity and content lists (which would be the straight-

forward implementation of our scoring model with a Threshold algorithm).
– TL+CL: This stragety, which is the main contribution of this paper, exploits

the additional content scores in the pair lists to reduce the uncertainty about
the score of documents with high proximity scores early in the process, which
often allows early termination of the algorithm. We can additionally tighten
the bounds when a proximity list for a pair (t1, t2) runs empty: If a document
was seen in the dimension for t1, but not in the proximity list, it is certain
that it won’t appear in the list for t2 any more.

5.2 Index List Pruning

For large collections, the size of the inverted lists may be too large to completely
store them, especially when the index includes proximity lists. As we do not
consider only adjacent terms, but any terms occurring in the same document,
a complete set of proximity lists will be much larger than the original text
collection. Lossless index compression techniques (see, e.g., [11]) are one way to
solve this problem, but the compression ratio will not be sufficient for really huge
collections. We therefore apply index pruning (which is a lossy index compression
technique) to reduce the size of the index, while at the same time sacrificing as
little result quality as possible. Following the literature on inverted lists for text
processing, a common way is pruning lists horizontally, i.e., dropping entries
towards the end of the lists. These entries have low scores and hence will not
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play a big role when retrieving the best results for queries. Unlike text lists,
pair lists contain many entries with very low scores (as the score depends on the
distance of term occurrences), so the pruning effect on pair lists should be a lot
higher than on text lists.

Our indexing framework provides three different pruning methods, mainly
geared towards proximity lists. First, we heuristically limit the distance of term
occurrences within a document, as occurrences within a large distance have only
a marginal contribution to the proximity score. Second, we heuristically limit the
list size to a constant, usually in the order of a few thousand entries. Third, we
leverage the seminal work by Soffer et al. [19] for proximity lists. They introduced
list pruning with quality guarantees for the scores of query results, assuming top-
k style queries with a fixed (or at least bounded) k. For each list l, they consider
the score sk(l) at position k of the list, and drop each entry from that list whose
score is below ε · sk(l), where 0 < ε < 1 is a tuning parameter.

6 Evaluation

6.1 Setup

We evaluated our algorithms with the Java-based, open-source TopX search
engine1 [21]. Our experiments were run using the TREC Terabyte collection
with roughly 25 million documents, corresponding to about 426GB of data. We
evaluated our methods with the 100 adhoc topics from the 2004 and 2005 TREC
Terabyte tracks. As we are focusing on top-k retrieval, we measured precision
at several cutoffs. To evaluate efficiency, we measured the number of sequential
(SA) and random (RA) accesses to the index lists and the number of bytes
transferred from disk, assuming sizes of 8 bytes for scores and document ids.
As random accesses are usually much more expensive than sequential accesses,
we additionally compute a byte-based abstract cost Cost(γ) = #bytesSA +
γ · #bytesRA for each run, based on the cost ratio γ := cRA/cSA of random
to sequential accesses.We indexed the documents with the indexer included in
the TopX system with stopword removal enabled and computed the proximity
lists needed for the queries with an additional tool. For the Okapi BM25 model,
we used the parameters k = k1 = 1.2 and b = 0.5. We ran the results with
TopX configured in RR-LAST mode and a batch size of 5,000, i.e., round-robin
sequential accesses in batches of 5,000 items to the index lists and postponing
random accesses to the end. Index lists were stored in an Oracle database.

6.2 Results with Unpruned Index Lists

Table 1 shows our experimental results for top-10 retrieval with unpruned index
lists and stemming enabled. It is evident that the configuration TL+CL improves
precision@10 to 0.6 over the original BM25 setting (which corresponds to TL
with a precision of 0.56), with a t-test and a Wilcoxon signed-rank confirming

1 http://topx.sourceforge.net

http://topx.sourceforge.net


294 R. Schenkel et al.

Table 1. Experimental results for top-10 retrieval of 100 topics on Terabyte

Configuration P@10 #SA #RA bytes SA bytes RA Cost(100) Cost(1000)

TL 0.56 24,175,115 196,174 386,801,840 1,569,392 543,741,040 1,956,193,840
TL+PXL 0.60 24,743,914 149,166 395,902,624 1,193,328 515,235,424 1,589,230,624
TL+CL 0.60 4,362,509 8,663 108,743,568 79,256 116,669,168 187,999,568
PXL 0.40 867,095 2,925 13,873,520 23,400 16,213,520 37,273,520

Table 2. Index sizes (million items) with different length limits, with and without
window limit

index/limit 500 1000 1500 2000 2500 3000 unpruned

TL 295 355 402 442 472 496 3,191
PXL/CL (est.) 368,761 435,326 481,949 515,079 542,611 566,277 1,410,238
PXL/CL, window≤ 10 (est.) 23,050 28,855 34,023 38,985 42,085 45,186 87,049

statistical significance. At the same time, it dramatically reduces the number of
accesses, bytes transferred, and abstract costs by a factor of 5 to 15 over the
BM25 baseline, due to the additional text scores available in CL and the better
bounds. The configuration TL+PXL with simple proximity lists achieves the same
improvement in precision as it uses the same scoring function, but needs to
run longer until it can safely stop. Scanning only the proximity lists exhibits
poor result precision, even though it is much faster. We verified by additional
experiments (not shown here) that the retrieval quality of our modified Büttcher
scoring model was as good as the original Büttcher model.

6.3 Results with Pruned Index Lists

We first study the size of our indexes at different levels of pruning for an index
(without stemming as this is an upper bound for the index size with stemming).
As the complete set of proximity lists is too large to completely materialize
it, we randomly sampled 1,500,000 term pairs with a frequency of at least 10,
of which about 1.2% had a nonempty proximity list. Table 2 shows the index
sizes (number of list entries) for text (exact) and proximity lists (estimated), for
different length limits. They are calculated/estimated according to the kind of
data stored in the lists as described in Subsection 5.1. We assume that document
identifiers and scores a size of 8 bytes each. Therefore one TL entry or PXL
entry (consisting of document identifier and BM25 score or accumulated score

Table 3. Index sizes (disk space) with different length limits, with and without window
limit

index/limit 500 1000 1500 2000 2500 3000 unpruned

TL 4.4 GB 5.3 GB 6.0 GB 6.6 GB 7.0 GB 7.4 GB 47.5 GB
PXL (est.) 5.4 TB 6.3 TB 7.0 TB 7.5 TB 7.9 TB 8.2 TB 20.5 TB
PXL, window≤ 10 (est.) 343.5 GB 430 GB 507 GB 580.9 GB 627.1 GB 673.3 GB 1.3 TB
CL (est.) 10.7 TB 12.7 TB 14.0 TB 15.0 TB 15.8 TB 16.5 TB 41.0 TB
CL, window≤ 10 (est.) 686.9 GB 860 GB 1.0 TB 1.1 TB 1.2 TB 1.3 TB 2.5 TB
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respectively) takes a size of 16 bytes whereas one CL entry takes a size of 32
bytes as it stores the document identifier, the accumulated score and two BM25
scores. It is evident that keeping all proximity lists, even with a length limit,
is infeasible. However, limiting the window to 10 reduces the size of the index
noticably to at most a factor of 8-15 over the unpruned text index, which may
be tolerated given the cheap disk space available today. Table 3 shows the index
sizes (required disk space) for the very same lists. The sze of TLs is not that
big issue as the unpruned TLs only amount to 47.5 GB, and can be further
downsized using maximum list lengths. The far more critical indexes are PXLs
and CLs that exhibit the prohibitive estimated size of 20.5 TB and 41.0 TB
respectively. Limiting the list size helps, although the lists remain too large.
Additionally restricting PXLs and CLs by a window size of ten finally leads to
tolerable sizes between 343.5 GB and 673.3 GB for PXLs and 686.9GB and 1.3
TB for CLs. As we show later (Table 4), excellent results can be achieved when
limiting the index size to 1,500. Hence, we need about 1 TB of disk space to
execute TL+CL(1500;window≤10) on a document collection with 426 GB data.
Additional lossless compression may further reduce the index sizes.

We then evaluated retrieval quality with pruned (text and proximity) index
lists, where we used combinations of window-based pruning with a maximal size
of 10, fixed-length index lists and the pruning technique by Soffer et al. [19] for
k = 10. All measurements were done without random accesses, hence we report
only a single cost value based on the number of bytes transferred by sequential
accesses. Additional experiments without this constraint showed that TopX only
rarely attempts to make RAs in this setting as the pruned lists are often very short.
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Table 4. Experimental results for top-10 retrieval with pruned lists

Configuration P@10 #SA bytes SA cost

TL+CL (window≤10) 0.60 5,268,727 111,119,408 111,119,408
TL (500 items) 0.27 148,332 2,373,312 2,373,312
TL (1000 items) 0.30 294,402 4,710,432 4,710,432
TL (1500 items) 0.32 439,470 7,031,520 7,031,520
TL (2000 items) 0.34 581,488 9,303,808 9,303,808
TL (2500 items) 0.36 721,208 11,539,328 11,539,328
TL (3000 items) 0.37 850,708 13,611,328 13,611,328
TL+CL (500 items) 0.53 295,933 7,178,960 7,178,960
TL+CL (1000 items) 0.58 591,402 14,387,904 14,387,904
TL+CL (1500 items) 0.58 847,730 20,605,312 20,605,312
TL+CL (2000 items) 0.60 1,065,913 25,971,904 25,971,904
TL+CL (2500 tuples) 0.60 1,253,681 30,648,064 30,648,064
TL+CL (3000 tuples) 0.60 1,424,363 34,904,576 34,904,576
TL+CL (ε = 0.01) 0.60 4,498,890 87,877,520 87,877,520
TL+CL (ε = 0.025) 0.60 3,984,801 73,744,304 73,744,304
TL+CL (ε = 0.05) 0.60 4,337,853 75,312,336 75,312,336
TL+CL (ε = 0.1) 0.60 5,103,970 84,484,976 84,484,976
TL+CL (ε = 0.2) 0.58 6,529,397 105,584,992 105,584,992
TL+CL (500;ε = 0.025) 0.54 281,305 6,628,528 6,628,528
TL+CL (1000;ε = 0.025) 0.58 521,519 12,034,320 12,034,320
TL+CL (1500;ε = 0.025) 0.59 732,919 16,606,064 16,606,064
TL+CL (2000;ε = 0.025) 0.60 910,721 20,377,904 20,377,904
TL+CL (2500;ε = 0.025) 0.60 1,060,994 23,519,296 23,519,296
TL+CL (3000;ε = 0.025) 0.60 1,191,956 26,211,376 26,211,376
TL+CL (500;window≤10) 0.58 290,788 6,931,904 6,931,904
TL+CL (1000;window≤10) 0.60 543,805 12,763,376 12,763,376
TL+CL (1500;window≤10) 0.61 780,157 18,117,552 18,117,552
TL+CL (2000;window≤10) 0.61 984,182 22,734,544 22,734,544
TL+CL (2500;window≤10) 0.61 1,166,144 26,854,608 26,854,608
TL+CL (3000;window≤10) 0.61 1,325,250 30,466,512 30,466,512

Table 5. Experimental results for top-100 retrieval with unpruned and pruned lists

Configuration P@100 MAP@100 #SA #RA bytes SA bytes RA

TL 0.37 0.13 42,584,605 434,233 681,353,680 3,473,864
TL+PXL 0.39 0.14 44,450,513 394,498 711,208,208 3,155,984
TL+CL 0.39 0.14 12,175,316 32,357 302,386,896 380,552
PXL 0.27 0.09 867,095 2,925 13,873,520 23,400
TL+CL (window≤ 10) 0.39 0.14 17,714,952 0 346,997,712 0
TL+CL (500 items) 0.34 0.11 310,469 0 7,558,816 0
TL+CL (1000 items) 0.37 0.13 610,983 0 14,838,144 0
TL+CL (1500 items) 0.38 0.13 904,910 0 21,911,520 0
TL+CL (2000 items) 0.38 0.14 1,184,658 0 28,615,776 0
TL+CL (2500 items) 0.39 0.14 1,457,093 0 35,138,176 0
TL+CL (3000 items) 0.39 0.14 1,723,204 0 41,493,728 0
TL+CL (500;ε = 0.025) 0.33 0.11 281,485 0 6,631,408 0
TL+CL (1000;ε = 0.025) 0.36 0.12 527,171 0 12,156,256 0
TL+CL (1500;ε = 0.025) 0.37 0.13 753,012 0 17,054,112 0
TL+CL (2000;ε = 0.025) 0.37 0.13 957,593 0 21,371,376 0
TL+CL (500;window≤10) 0.34 0.12 290,968 0 6,934,784 0
TL+CL (1000;window≤ 10) 0.37 0.13 551,684 0 12,940,576 0
TL+CL (1500;window≤ 10) 0.38 0.13 802,538 0 18,638,752 0
TL+CL (2000;window≤ 10) 0.38 0.13 1,039,466 0 23,969,632 0
TL+CL (2500;window≤ 10) 0.38 0.13 1,261,124 0 28,907,200 0
TL+CL (3000;window≤ 10) 0.38 0.13 1,483,154 0 33,856,144 0

Table 4 shows the experimental results for top-10 queries in this setup, again with
stemming enabled. It is evident that TL+CL with length-limited lists and a lim-
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Table 6. Costs for top-100 retrieval with unpruned and pruned lists

Configuration Cost(100) Cost(1000)

TL 1,028,740,080 4,155,217,680
TL+PXL 1,026,806,608 3,867,192,208
TL+CL 340,442,096 682,938,896
PXL 16,213,520 37,273,520
TL+CL (window≤ 10) 346,997,712 346,997,712
TL+CL (500 items) 7,558,816 7,558,816
TL+CL (1000 items) 14,838,144 14,838,144
TL+CL (1500 items) 21,911,520 21,911,520
TL+CL (2000 items) 28,615,776 28,615,776
TL+CL (2500 items) 35,138,176 35,138,176
TL+CL (3000 items) 41,493,728 41,493,728
TL+CL (500;ε = 0.025) 6,631,408 6,631,408
TL+CL (1000;ε = 0.025) 12,156,256 12,156,256
TL+CL (1500;ε = 0.025) 17,054,112 17,054,112
TL+CL (2000;ε = 0.025) 21,371,376 21,371,377
TL+CL (2500;ε = 0.025) 25,288,646 25,288,646
TL+CL (3000;ε = 0.025) 28,924,720 26,211,376
TL+CL (500;window≤10) 6,934,784 6,934,784
TL+CL (1000;window≤ 10) 12,940,576 12,940,576
TL+CL (1500;window≤ 10) 18,638,752 18,638,752
TL+CL (2000;window≤ 10) 23,969,632 23,969,632
TL+CL (2500;window≤ 10) 28,907,200 28,907,200
TL+CL (3000;window≤ 10) 33,856,144 33,856,144

ited window size gives a factor of 50-150 over the unpruned TL baseline in terms
of saved cost, while yielding the same result quality (TL+CL (1000;window≤10)).
Using TL with text lists of limited length is a lot worse in effectiveness. Pruning
with ε is not as efficient, and large values for ε in fact increase cost: Many en-
tries from the proximity lists are pruned away, but at the same time the addi-
tional content scores available from these entries are not available any more. In
combination with length limiting, results are comparable to our best configura-
tion, but with slightly longer lists. Figures 1 to 4 illustrate some of these experi-
mental results. We obtain the best precision values when for limiting the list size
to 1,500 or more elements. Out of the approaches depicted in Figures 1 and 2,
TL+CL(#items) is the approachwith the worst precision values at the highest cost.
TL+CL(#items, window≤10) provides the best precision values at a medium cost,
whereas TL+CL(#items, ε = 0.025) only comes up with a slightly better precision
than TL+CL(#items),however at the best costs. For mere static index list pruning,
precision values are most favorable for choices of ε below 0.1.

As especially pruning along the lines of Soffer et al. [19] is done for a specific
value of k, it is interesting to see how good results using the index pruned with
k = 10 are for larger values of k. For space reasons, we limit the presentation
to k = 100; Tables 5 and 6 shows the results for pruned and unpruned lists.
Even though proximity awareness cannot improve much on result quality, most
runs with pruning are at least as effective as the unpruned runs, while saving
one or two orders of magnitude in accesses, bytes transferred, and cost. The
combination of length-limited lists and limited window size is again best, with
a peak factor of 350 over the unpruned TL baseline at the same quality (TL+CL
(1000;window≤10)).
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7 Conclusion

This paper presented novel algorithms and implementation techniques for effi-
cient evaluation of top-k queries on text data with proximity-aware scoring. We
have shown that our techniques can speed up evaluation by one or two orders
of magnitude, trading in runtime for cheap disk space and maintaining the very
high result quality (effectiveness) of proximity-aware scoring models. Our fu-
ture work will focus on smarter data structures for indexes and applying index
compression techniques.
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Abstract. Protein structure analysis is one of the most important re-
search issues in the post-genomic era, and faster and more accurate index
data structures for such 3-D structures are highly desired for research on
proteins. The geometric suffix tree is a very sophisticated index struc-
ture that enables fast and accurate search on protein 3-D structures. By
using it, we can search from 3-D structure databases for all the substruc-
tures whose RMSDs (root mean square deviations) to a given query 3-D
structure are not larger than a given bound. In this paper, we propose
a new data structure based on the geometric suffix tree whose query
performance is much better than the original geometric suffix tree. We
call the modified data structure the prefix-shuffled geometric suffix tree
(or PSGST for short). According to our experiments, the PSGST out-
performs the geometric suffix tree in most cases. The PSGST shows its
best performance when the database does not have many substructures
similar to the query. The query is sometimes 100 times faster than the
original geometric suffix trees in such cases.

1 Introduction

Protein 3-D structure analysis is one of the most important post-genomic re-
search topics in molecular biology. Recently, more and more protein structures
are solved by state-of-the-art technologies such as NMR (nuclear magnetic res-
onance), and the size of the protein 3-D structure database increases larger and
larger. Now, there are more than 40,000 entries in the PDB database [2] and
it is still increasing. The protein structures are said to have similar functions
if their 3-D structures are similar. Thus, to analyze the functions of a protein
whose structure is newly determined, it is very important to search for similar
(sub)structures from the growing database. There are many comparison algo-
rithms for protein structures [5], and the results could be very accurate, but
it will require enormous amount of time to apply them against the very large
databases. Hence, indexing techniques for protein structure databases are highly
desired to avoid the large computation time.

The similarity of two protein structures is often measured by the RMSD (root
mean square deviation) [1,4,11]. The geometric suffix tree [12] is an indexing data
structure that enables efficient search from a 3-D structure database for all the
substructures whose RMSDs to a given query are not larger than some given
bound. It also has many potential applications, such as 3-D motif finding and

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 300–309, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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functional prediction. The geometric suffix tree is based on the famous suffix trees
for alphabet strings [6,8,10,13,14], but it deals with 3-D coordinates instead of
alphabet characters. In this paper, we propose a new data structure based on
the geometric suffix tree, which we call the prefix-shuffled geometric suffix tree,
or PSGST for short. It improves the query performance of the geometric suffix
tree by changing the order of atoms in each substructure. We will demonstrate
the PSGSTs’ performance through experiments.

This paper is organized as follows. In section 2, we explain the preliminaries.
In section 3, we explain a new notion called the ‘prefix-shuffled structure’ that
would help us to improve the query performance of the geometric suffix trees.
Then, in section 4, we explain the newly proposed data structure, the prefix-
shuffled geometric suffix tree. In section 5, we demonstrate the performance of
it through experiments. Finally in section 6, we conclude our results and discuss
future work.

2 Preliminaries

2.1 RMSD: The Root Mean Square Deviation

A protein is a chain of amino acids. Each amino acid has one unique carbon
atom named Cα, and the set of all the Cα atoms in a protein is called the
backbone of the protein. The backbone is topologically linear, but it forms a
geometrically very complex structure in the 3-D space. Most previous work on
protein 3-D structures deals with the coordinates of the backbone atoms. Thus,
we also consider the coordinates of the backbone atoms as the target to index.
The most popular and basic measure to determine geometric similarity between
two sets of points in 3-D, like the positions of backbone atoms, is the RMSD
(root mean square deviation) [1,4,11].

Before defining the RMSD, let us define the measures that we call the MSSD
(minimum sum squared distance) and the RSSD ( Root Sum Square Distance).
Let the two sets of points (i.e., structures) to be compared be P ={p1, p2, . . . , pn}
and Q = {q1, q2, . . . , qn}, where pi and qj are 3-D coordinates. To compute the
MSSD/RSSD/RMSD between two sets of 3-D coordinates, we must know which
atom in one structure corresponds to which atom in the other. Here we con-
sider pi corresponds to qi for all i. Let mssd(P, Q) be the minimum value of∑n

i=1 ‖pi−(R ·qi+v)‖2 over all the possible rotation matrices R and translation
vectors v, where ‖ · ‖ denotes the norm. Let R̂(P, Q) and v̂(P, Q) be the rota-
tion matrix and the translation vector that satisfies

∑n
i=1 ‖pi − (R̂(P, Q) · qi +

v̂(P, Q))‖2 = mssd(P, Q). Then the RSSD is defined as the squared root of it:
rssd(P, Q) =

√
mssd(P, Q), and the RMSD is finally defined as rssd(P, Q)/

√
n.

It is known that v̂(P, Q) =
∑n

i=1 (pi − R̂(P, Q) · qi)/n. It means that the
centroids of the two point sets must be translated to the same point by v̂(P, Q).
Hence, if both of the point sets are translated so that their centroids are located
at the origin of the coordinates, the RMSD problem is reduced to a problem of
finding R that minimizes f(R) =

∑n
i=1 ‖pi −R ·qi‖2. We can solve this problem



302 T. Shibuya

Fig. 1. A geometric trie for two protein 3-D structures. A node is constructed for P [1..7]
and Q[1..7], as the RSSD between P [1..7] and Q[1..7] is smaller than the threshold
bRSSD. The combined edge is represented by arbitrary one of the two substructures —
P [1..7] is chosen in this example.

in linear time by using the singular value decomposition (SVD) [1] as follows.
Let H =

∑n
i=1 pi · qt

i, where vt means the transpose of vector v. Then f(R) can
be described as

∑n
i=1 (pt

ipi + qt
iqi)− trace(R ·H), and trace(RH) is maximized

when R = V UT , where UΛV is the SVD of H , and UT denotes the transpose of
matrix U . The SVD of H can be done in constant time as H is a fixed-size 3× 3
matrix (see [7] for SVD algorithms). Hence the optimal rotation matrix can be
obtained in constant time from H . In this way, we can compute the RMSD in
O(n) time. Note that there are rare degenerate cases where det(V UT ) = −1,
which means that V UT is a reflection matrix. We ignore the degenerate cases in
this paper.

According to [12], the RMSD value, the optimal rotation matrix R̂(P, Q), and
the optimal translation vector v̂(P, Q) can be computed incrementally by keeping
some additional values for computation, i.e., we can compute R̂(Pi, Qi) and
v̂(Pi, Qi) for Pi = {p1, p2, . . . , pi} and Qi = {q1, q2, . . . , qi} in O(1) time after
the computation of R̂(Pi−1, Qi−1) and v̂(Pi−1, Qi−1) for Pi−1={p1, p2, . . . , pi−1}
and Qi−1 = {q1, q2, . . . , qi−1}, for any i (see [12] for more details).

2.2 Geometric Suffix Trees

The suffix tree of a string is the compacted trie of all its suffixes. Likewise, the
geometric suffix tree [12] is based on a data structure called the geometric trie,
which is defined as follows.

Consider a set of n 3-D structures W = {W1, W2, . . . , Wn}, and let �i be the
length of Wi. Let w

(i)
j denote the coordinates of the j-th atom of Wi. Let Wi[j..k]

denote {w
(i)
j , w

(i)
j+1, . . . , w

(i)
k }, which means a structure formed by the (k−j+1)

atoms from the j-th atom to the k-th atom in Wi. We call it a substructure of
Wi. Furthermore, we call Wi[1..j] (1 ≤ j ≤ �i) a prefix substructure of Wi.
Conversely, Wi[j..�i] is called a suffix substructure. Then, the geometric trie for
W is a rooted tree data structure that has the following features (Figure 1):
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1. All the internal nodes (nodes other than the root and the leaves) have more
than one child.

2. The tree has n leaves, each of which corresponds to one protein structure in
W, and no two leaves correspond to the same structure. Let leaf(i) denote
the leaf that corresponds to Wi.

3. All the edges e except for some of edges that end at leaves correspond to
a substructure P (e) = Wi[j..k], and they have information of some 3-D
rotation matrix R(e) and some 3-D translation vector v(e) for each.

4. Let S(e) be P (e) rotated by R(e) and translated by v(e), which is called the
‘edge structure’ of e. For a node x in the tree, let S(x) be a structure that
is constructed by concatenating all the edge structures of the edges on the
path from the root to x, which we call the ‘node structure’ of x. For any
leaf v = leaf(i) and its node structure S(v), the RSSD between any prefix
substructure of S(v) and the prefix substructure of Wi (of the same length)
must not be larger than some given fixed bound bRSSD.

5. For an edge e = (v, w) with some corresponding substructure P (e), the
‘branching structure’ str(e) is defined as a structure that is obtained by
adding the coordinates of the first atom of S(e) (i.e., S(e)[1]) after S(v). For
any internal node v with more than one outgoing edge with corresponding
substructures, the RSSD between str(e1) and str(e2) must be larger than
bRSSD, where e1 and e2 are arbitrary two of the edges.

Then the geometric suffix tree of a structure P = {p1, p2, . . . , pn} is defined
as the geometric trie of all the suffix substructures of P . The geometric suffix
tree can be stored in O(n) memory, though there are O(n2) substructures in
the target structure. It can be built in O(n2) time by just adding suffix sub-
structures into the tree one by one, using the incremental RMSD computation
technique. The geometric suffix tree can be easily extended to deal with all the
suffix substructures of a set of structures, like the generalized suffix trees for
ordinary alphabet strings [8].

A prefix substructure of a node structure is called a ‘representative structure’.
To search for a substructure similar (i.e., RMSD is within some bound bRMSD) to
a query Q[1..m] using the geometric suffix tree, we first search for all the represen-
tative structures of length m whose RMSD to Q is within bRMSD+(bRSSD/

√
m).

There always exist (one or more) original substructures that correspond to each
representative structure. Finally, if the RMSDs between the query and the enu-
merated original substructures are actually within bRMSD, we output them as
the answers.

3 Prefix-Shuffled Structures

When we search for similar substructures from the geometric suffix trees, we
incrementally compare RSSDs between the prefix substructures of the query
structure and representative structures. In Figure 2, the line noted as ‘Normal’
shows the RSSDs of prefix substructures (of various lengths) of two very different
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Fig. 2. Prefix RSSDs and Shuffled Prefix RSSDs. The RSSD goes up faster if the order
of the atoms are shuffled.

proteins (a myoglobin and a rhodopsin taken from the set of structures used in
section 5). In this example, the RMSD between two prefix substructures of length
30 is 9.40Å (i.e., RSSD is 50.62Å), which means that the two structures are not
at all similar to each other.

Consider the case that the myoglobin structure above is stored in the geomet-
ric suffix tree as a representative structure, and we want to find all the represen-
tative structures whose RSSDs to the rhodopsin structure above is within 20.0Å.
Then we must incrementally compare these prefix structures up to 12 atoms. It
means that we have to meaninglessly compute RSSDs 12 times, though these
two structures are not at all similar to each other.

Let π = {π1, π2, . . . , πk} be some permutation of length k. For a structure
P = {p1, p2, . . . , pn} such that n ≥ k, consider a new structure Hπ(P ) =
{pπ1 , pπ2 , . . . , pπk

, pk+1, pk+2, . . . , pn}, which we call the prefix-shuffled struc-
ture of P by π.

In Figure 2, the dotted line noted as ‘Random’ shows the RSSDs between
the prefix substructures of the prefix-shuffled structures of the same two struc-
tures (a myoglobin and a rhodopsin) with a randomly-generated permutation
of length 30.1 In other words, we compare Hπ(P ) and Hπ(Q) instead of P and
Q. According to the figure, the RSSD exceeds 20.0Å if the prefix substructure
length becomes larger than 7, which is much smaller than the ‘12’ in the previous
‘Normal’ case. It is a very reasonable result, because the distances between two
adjacent atoms in the prefix-shuffled structure is often much larger than those
in the original structure. Based on these observations, we consider that we may
be able to improve the query performance by shuffling the structures with some
appropriate permutation (both for the database and the query). The new data
structure proposed in the next section is based on this intuition.

1 The permutation we used here is {3, 25, 12, 29, 2, 13, 19, 16, 17, 10, 11, 9, 7, 1, 8, 18, 26,
27, 23, 5, 28, 15, 21, 20, 24, 14, 30, 22, 4, 6}.
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4 Prefix-Shuffled Geometric Suffix Trees

We define the prefix-shuffled geometric suffix tree (PSGST for short) for a struc-
ture P as the geometric trie over all the prefix-shuffled suffix substructures of
P by some permutation π (i.e., {Hπ(P [i..n])|1 ≤ i ≤ n − |π| + 1}). The mem-
ory requirement for storing the PSGST is O(n) (same as the geometric suffix
tree). Recall that the geometric suffix tree is built by just adding each suffix
substructures one by one. The PSGSTs can also be built in the same way as the
geometric suffix trees, which requires O(n2) time. Moreover, we can search for
substructures that is similar to Q by just searching for representative structures
that is similar to the prefix-shuffled query Hπ(Q) on the PSGST, if the length of
Q is not smaller than the length of π. In this paper, we do not deal with queries
which are shorter than the permutation π.

To construct the PSGSTs, we need some appropriate permutation of a given
length. A random permutation can be used for this purpose. A uniform random
permutation of length k can be generated in O(k) time by iteratively swapping
each position i (1 ≤ i ≤ k, in increasing order) of a list {1, 2, . . . , k} with a
randomly chosen position among positions j such that j ≥ i (see [3] for details).

Other than the random permutations, the following permutation can also be
used. A permutation π = {π1, π2, . . . , πk} is called a furthest permutation if it
satisfies π1 = 1, π2 = k, and min�<i |πi−π�| ≥ min�<i |πj−π�| for any i and j such
that i < j. We call it ‘furthest’ because πi is furthest from {π1, . . . , πi−1} among
πi, πi+1, . . . , πk. For example, {1, 9, 5, 3, 7, 2, 4, 6, 8} is a furthest permutation.
We can assume that the distance between two atoms pπi and pπj would be large
if |πi − πj | is large. Therefore we consider the furthest permutation might be
suitable for the PSGSTs.

The furthest permutation of length k can also be computed in O(k) time with
a bit operation technique as follows. To ease discussion, we first assume that
k − 1 is a power of 2 and let d = log2(k − 1). Let revd(x) be a function that
reverses the last d bit of x. For example, rev3(3) = rev3(011(2)) = 110(2) = 6.
The function revd(x) can be computed in O(1) time.2 Then consider a permu-
tation π(k) of length k where π

(k)
1 = 1, π

(k)
2 = k, and π

(k)
i = revd(i − 2) + 1 for

i ≥ 3. It is the furthest permutation of length k, and it can be computed in O(k)
time. In case that k−1 is not a power of 2, let k′ be the smallest power of 2 that
is not smaller than k, and construct the furthest permutation π(k′+1) with the
above method. Then the furthest permutation of length k can be obtained by
just removing numbers larger than k from π(k′+1), which requires only O(k) time.

2 We can compute revd(x) by using a pre-computed table of the values of rev�d/c�(x)

for 0 ≤ x < 2�d/c�, where c is an appropriate constant positive integer. If we use
appropriate c, the table size must be reasonably small, even if k (i.e., 2d + 1) is
very large. But even without such table, it takes only O(log d) time to compute
revd(x) with the basic bit operations of AND, OR, and SHIFT, and consequently the
total computing time is still O(k log log k) time. If k is a 32-bit (or even a 64-bit)
integer, we can assume it as linear time. Note that it is very easy to design a digital
circuit that computes revd(x) in constant time.
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Table 1. Time (in second) for constructing a geometric suffix tree and PSGSTs. The
‘Random’ columns shows the average/minimum/maximum construction time of 100
PSGSTs constructed with different permutations. The ‘Furthest’ column shows the
construction time for the PSGST constructed with the furthest permutation.

PSGST
GST Random

Furthest
Average Minimum Maximum

Time (sec) 39.10 37.26 35.87 38.65 37.89

Thus we conclude that the total computation time for constructing the furthest
permutation of length k is O(k).

In the next section, we will show through experiments how well our simple
strategy works for 3-D substructure search.

5 Experiments

In this section, we demonstrate the performance of the PSGSTs. All the exper-
iments are done on a Sun Fire 15K super computer with 288 GB memory and
96 UltraSPARC III Cu CPUs running at 1.2GHz.3 As a data for experiments,
we used a set of 228 myoglobin or myoglobin-related PDB data files containing
275 protein structures, which is same as the set used in the experiments by [12].
The total number of amino acids in the protein set is 41,719.

At first, we compared the construction time of PSGSTs against the construc-
tion time of the geometric suffix trees, by setting the RSSD bound bRSSD =
20.0Å (Table 1). In the table, the ‘GST’ column shows the construction time of
the geometric suffix tree against the myoglobin database. Next, we constructed
100 PSGSTs with different random permutations of length 50.4 The ‘Random’
column shows the average, minimum, and maximum construction time among
these 100 experiments. They are a little faster than the case of the geometric
suffix tree, but it is not much different. We also did experiments by using the
furthest permutation of length 50. The ‘Furthest’ column shows the result. The
result is almost the same as the average of the results of random permutations.
We assume these results are very reasonable, as there is no difference between
the algorithms for the PSGSTs and the geometric suffix trees except for the
prefix shuffling.

We next examined the query speed of the above 101 PSGSTs (i.e., the 100
PSGSTs constructed with different random permutations, and the one con-
structed with the furthest permutation) and the geometric suffix tree (Table 2).
We used two protein substructures as queries: (a) A substructure from the 20th
amino acid to the 69th amino acid of the backbone structure of a rhodopsin5

3 We used only one CPU for each experiment.
4 We used the Mersenne-Twister [9] for generating random numbers.
5 As seen in section 3, rhodopsins have nothing to do with myoglobins, and their

structures are totally different.
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Table 2. Time (in second) for queries on the geometric suffix trees and the PSGSTs.
In (a), we used as a query a protein structure unrelated to any of the structures in a
myoglobin structure database. In (b), by contrast, we used a myoglobin structure that
is included in the same database.

(a) A rhodopsin query against the myoglobin database.

bRMSD (Å) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

#hits 0 0 0 0 0 0 0 0 0 0

GST 0.0207 0.0825 0.1736 0.2567 0.3306 0.3960 0.4554 0.5146 0.5726 0.6321

Ran
avg 0.0028 0.0063 0.0127 0.0241 0.0428 0.0716 0.1130 0.1681 0.2379 0.3244

PS
-dom

min 0.0002 0.0008 0.0018 0.0037 0.0080 0.0185 0.0372 0.0679 0.1053 0.1607
-GST max 0.0167 0.0461 0.0866 0.1241 0.1621 0.1986 0.2350 0.3020 0.4008 0.5130

Furthest 0.0013 0.0022 0.0044 0.0081 0.0332 0.0576 0.1012 0.1605 0.2423 0.0163

(b) A myoglobin query against the myoglobin database.

bRMSD (Å) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

#hits 1 1 4 9 19 26 33 44 86 142

GST 0.0654 0.1065 0.1547 0.2333 0.3145 0.3994 0.4662 0.5473 0.7101 0.7859

Ran
avg 0.0583 0.0887 0.1219 0.1688 0.2372 0.2960 0.3519 0.4287 0.5443 0.6590

PS
-dom

min 0.0472 0.0712 0.0986 0.1243 0.1889 0.2445 0.2958 0.3476 0.4480 0.5608
-GST max 0.0778 0.1143 0.1580 0.2180 0.2984 0.3624 0.4359 0.5174 0.6835 0.7871

Furthest 0.0615 0.0930 0.1637 0.2122 0.2633 0.3164 0.3775 0.4829 0.5796 0.7463

(named 1F88) obtained from the PDB, and (b) A substructure from the 20th
amino acid to the 69th amino acid of the backbone structure of a myoglobin
(named 103M), which is contained in the myoglobin database we used for con-
structing the geometric suffix trees and the PSGSTs. Note that these queries are
same as those used in [12]. For each query, we searched for similar substructures
with 10 different settings of the RMSD bound (bRMSD). In the table, the ‘#hits’
rows show the numbers of similar structures obtained with the designated bRMSD

settings, the ‘GST’ rows show the query time (in second) on the geometric suffix
tree, and the ‘PSGST’ rows show the query time (in second) on the PSGSTs. In
the ‘PSGST’ rows, the ‘Random’ rows show the average/minimum/maximum
query time among the 100 PSGSTs constructed with different random permuta-
tions, while the ‘Furthest’ rows show the query time on the PSGST constructed
with the furthest permutation.

In the experiment (a), the PSGST outperforms the geometric suffix tree in
all the 101 cases. The PSGSTs constructed with random permutations perform
about 1.9–13 times better than the geometric suffix tree in average. Moreover,
the PSGSTs perform more than 100 times better than the geometric suffix tree
in the best case. If we use the furthest permutation, the PSGST performs about
2.6–37.5 times better than the geometric suffix tree. The results by the furthest
permutation is better than the average of results by random permutations, but
it is not the best one among the 101 permutations we tried.

Consider a Figure 2-like graph for two similar structures. In this case, the
RSSD will not go up until the end of the structure. Thus, we can easily imagine
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that the PSGSTs are not so efficient if the database has many structures similar
to the query, which can be seen in the experiment (b). But, according to the
table, the PSGST outperforms the geometric suffix tree in most cases. If we use
a random permutation, the PSGST performs about 1.5 times better than the
geometric suffix tree in average. If we use the furthest permutation, the PSGST
outperforms the geometric suffix tree in all the cases but 1 case. All in all, we
can conclude that the PSGST outperforms the geometric suffix tree.

6 Discussion

We proposed a new data structure based on the geometric suffix tree, which we
call the prefix-shuffled geometric suffix tree (PSGST). The PSGSTs show higher
query performance than the geometric suffix trees in most cases, though the
construction time is almost the same. In the best case, a query on a PSGST is
more than 100 times faster than the same query on the geometric suffix tree.

Several tasks remain as future work. The PSGST performs well especially
when there are not many substructures similar to the query in the database. It
means that the PSGST can be used as a very powerful filtering tool for some
other more flexible similarity search algorithms on 3-D structures, which is one of
the future tasks. Another future task is finding gapped 3-D motifs of proteins by
using the PSGST. We do not know how to get the optimal permutation for the
PSGST, which is an open problem. On PSGSTs, we cannot search for queries
shorter than the permutation used for constructing the PSGST. It is also an
open problem how to smartly deal with such short queries on PSGSTs.
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